OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 26 — Sep. 10, 2010
  • pp: 4906–4914

High sensitivity detection of NO 2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser

Gottipaty N. Rao and Andreas Karpf  »View Author Affiliations


Applied Optics, Vol. 49, Issue 26, pp. 4906-4914 (2010)
http://dx.doi.org/10.1364/AO.49.004906


View Full Text Article

Enhanced HTML    Acrobat PDF (561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A trace gas sensor for the detection of nitrogen dioxide based on cavity ringdown spectroscopy (CRDS) and a continuous wave external cavity tunable quantum cascade laser operating at room temperature has been designed, and its features and performance characteristics are reported. By measuring the ringdown times of the cavity at different concentrations of NO 2 , we report a sensitivity of 1.2 ppb for the detection of NO 2 in Zero Air.

© 2010 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6360) Spectroscopy : Spectroscopy, laser
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 21, 2010
Revised Manuscript: August 3, 2010
Manuscript Accepted: August 6, 2010
Published: September 3, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Gottipaty N. Rao and Andreas Karpf, "High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser," Appl. Opt. 49, 4906-4914 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-26-4906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006). [CrossRef]
  2. J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009). [CrossRef]
  3. G. M. Mitchell, V. Vorsa, and G. L. Ryals, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at Semicon West, San Francisco, California, 17–21 July 2002.
  4. A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, and J. Wolfrum, “Laser in situ monitoring of combustion processes,” Appl. Opt. 29, 4860–4872 (1990). [CrossRef] [PubMed]
  5. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010). [CrossRef]
  6. F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).
  7. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54197–236(1998). [CrossRef]
  8. F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources , Vol. 89 of Topics in Applied Physics,I.T.Sorokina and K.L.Vodopyanov, eds. (Springer-Verlag, 2003), pp. 445–516.
  9. S. T. Persijn, E. Santosa, and F. J. M. Harren, “A versatile photoacoustic spectrometer for sensitive trace-gas analysis in the mid-infrared wavelength region (5.1–8.0 and 2.8–4.1 μm),” Appl. Phys. B 75, 335–342 (2002). [CrossRef]
  10. J. Ye, L. Ma, and J. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998). [CrossRef]
  11. J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.
  12. G. Berden, R. Peeters, and G. Meijer, “Cavity ringdown spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000). [CrossRef]
  13. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). [CrossRef]
  14. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988). [CrossRef]
  15. K. W. Busch and M. Busch, “Introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy, Vol. 720 of the ACS Symposium Series, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 7–19. [CrossRef]
  16. K. K. Lehmann, G. Berden, and R. Engeln, “An introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy: Techniques and Applications, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 1–26.
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  18. E. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001). [CrossRef]
  19. K. W. Busch, A. Hennequin, and M. A. Busch, “Mode formation in optical cavities,” in Cavity Ringdown Spectroscopy, Vol. 720 of the ACS Symposium Series, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 34–48. [CrossRef]
  20. G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009). [CrossRef]
  21. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96139–204 (2005). [CrossRef]
  22. M. Šimečková, D. Jacquemarta, L. Rothman, R. R. Gamacheb, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155(2006). [CrossRef]
  23. C. N. Mikhailenko, Yu. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases: the structure and main functions,” Atmos. Oceanic Opt. 18, 685–695 (2005).
  24. A. Schmohl, A. Miklos, and P. Hess, “Effects of adsorption–desorption processes on the response time and accuracy of photoacoustic detection of ammonia,” Appl. Opt. 40, 2571–2578 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited