OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 26 — Sep. 10, 2010
  • pp: 4926–4935

Probabilistic color matching and tracking of human subjects

Abdeq M. Abdi, Mendel Schmiedekamp, and Shashi Phoha  »View Author Affiliations

Applied Optics, Vol. 49, Issue 26, pp. 4926-4935 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1020 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pattern discovery algorithms based on the computational mechanics (CM) method have been shown to succinctly describe underlying patterns in data through the reconstruction of minimum probabilistic finite state automata (PFSA). We apply the CM approach toward the tracking of human subjects in real time by matching and tracking the underlying color pattern as observed from a fixed camera. Objects are extracted from a video sequence, and then raster scanned, decomposed with a one-dimensional Haar wavelet transform, and symbolized with the aid of a red–green–blue (RGB) color cube. The clustered causal state algorithm is then used to reconstruct the corresponding PFSA. Tracking is accomplished by generating the minimum PFSA for each subsequent frame, followed by matching the PFSAs to the previous frame. Results show that there is an optimum alphabet size and segmentation of the RGB color cube for efficient tracking.

© 2010 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(150.1135) Machine vision : Algorithms
(100.4999) Image processing : Pattern recognition, target tracking
(150.6044) Machine vision : Smart cameras

ToC Category:
Image Processing

Original Manuscript: December 17, 2009
Revised Manuscript: August 6, 2010
Manuscript Accepted: August 10, 2010
Published: September 8, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Abdeq M. Abdi, Mendel Schmiedekamp, and Shashi Phoha, "Probabilistic color matching and tracking of human subjects," Appl. Opt. 49, 4926-4935 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual surveillance of object motion and behavior,” IEEE Trans. Syst. Man Cybern. C 34, 334–352 (2004). [CrossRef]
  2. R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt, and L. Wixon, “A system for video surveillance and monitoring,” Carnegie Mellon University report CMU-RI-TR-00-12 (2001).
  3. C. Lerdsudwichai, M. Abdel-Mottaleb, and A. Ansari, “Tracking multiple people with recovery from partial and total occlusion,” Pattern Recogn. 38, 1059–1070 (2005). [CrossRef]
  4. A. A. Argyros and M. I. A. Lourakis, “Three-dimensional tracking of multiple skin-colored regions by a moving stereoscopic system,” Appl. Opt. 43, 366–377 (2004). [CrossRef] [PubMed]
  5. S. Weng, C. Kuo, and S. Tu, “Video object tracking using adaptive Kalman filter,” J. Visual Commun. Image Represent. 17, 1190 (2006). [CrossRef]
  6. G. R. Bradski, “Computer video face tracking for use in a perceptual user interface,” Intel Technol. J. Q2, 1–15 (1998).
  7. M. J. Swain and D. H. Ballard, “Color indexing,” Int. J. Comput. Vis. 7(1), 11–32 (1991). [CrossRef]
  8. M. S. Alam, J. Khan, and A. Bal, “Heteroassociative multiple-target tracking by fringe-adjusted joint transform correlation,” Appl. Opt. 43, 358–365 (2004). [CrossRef] [PubMed]
  9. F. A. Sadjadi, “Infrared target detection with probability density functions of wavelet transform subbands,” Appl. Opt. 43, 315–323 (2004). [CrossRef] [PubMed]
  10. C. R. Shalizi and J. P. Crutchfield, “Computational mechanics: pattern and prediction, structure, and simplicity,” J. Stat. Phys. 104, 817–879 (2001). [CrossRef]
  11. A. Ray, “Symbolic dynamic analysis of complex systems for anomaly detection,” Signal Process. 84, 1115–1130 (2004). [CrossRef]
  12. V. Rajagopalan and A. Ray, “Symbolic time series analysis via wavelet-based partitioning,” Signal Process. 86, 3309–3320 (2006). [CrossRef]
  13. C. R. Shalizi and K. L. Shalizi, “Blind construction of optimal nonlinear recursive predictors for discrete sequences,” in Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence (AUAI Press, 2004), Vol. 70, pp. 504–511.
  14. M. Schmiedekamp, A. Subbu, and S. Phoha, “The clustered causal state algorithm: efficient pattern discovery for lossy data-compression applications,” Comput. Sci. Eng. 8, 59–67(2006). [CrossRef]
  15. M. Piccardi, “Background subtraction techniques: a review,” in 2004 IEEE International Conference on Systems, Man, and Cybernetics (IEEE, 2004), pp. 3099–3104.
  16. C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelets Transforms: a Primer (Prentice-Hall1998).
  17. E. Vidal, F. Thollard, C. del la Higuera, F. Casacuberta, and R. C. Carrasco, “Probabilistic finite-state machines: Part I,” IEEE Trans. Pattern Anal. Mach. Intell. 27, 1013–1025(2005). [CrossRef] [PubMed]
  18. Open Source Computer Vision, http://opencv.willowgarage.com/wiki/.
  19. G. Theo, “Robust segmentation and tracking of colored objects in video,” IEEE Trans. Circuits Syst. Video Technol. 14, 776–781 (2004). [CrossRef]
  20. M. W. Lee and R. Nevatia, “Body part detection for human pose estimation and tracking,” in Proceedings of the 2008 IEEE Workshop on Motion and Video Computing (IEEE, 2008).
  21. J. Ritter, J. Kato, S. Joga, and A. Blake, “A probabilistic background model for tracking,” in ECCV 2000, LNCS 1843, D.Vernon, ed. (Springer-Verlag, 2000), pp. 336–350.
  22. J. Sun, W. Zhang, X. Tang, and H. Y. Shum, “Background cut,” in ECCV 2006, Part II, LNCS 3952, A.Leonardis, H.Bishcof, A.Pinz, eds. (Springer-Verlag, 2006), pp. 628–641.
  23. Y. Shan and R. Wang, “Improved algorithms for motion detection and tracking,” Opt. Eng. 45, 067201 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited