OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 26 — Sep. 10, 2010
  • pp: 4936–4950

Monte Carlo code for high spatial resolution ocean color simulations

Davide D’Alimonte, Giuseppe Zibordi, Tamito Kajiyama, and José C. Cunha  »View Author Affiliations


Applied Optics, Vol. 49, Issue 26, pp. 4936-4950 (2010)
http://dx.doi.org/10.1364/AO.49.004936


View Full Text Article

Enhanced HTML    Acrobat PDF (5070 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Monte Carlo code for ocean color simulations has been developed to model in-water radiometric fields of downward and upward irradiance ( E d and E u ), and upwelling radiance ( L u ) in a two-dimensional domain with a high spatial resolution. The efficiency of the code has been optimized by applying state-of-the-art computing solutions, while the accuracy of simulation results has been quantified through benchmark with the widely used Hydrolight code for various values of seawater inherent optical properties and different illumination conditions. Considering a seawater single scattering albedo of 0.9, as well as surface waves of 5 m width and 0.5 m height, the study has shown that the number of photons required to quantify uncertainties induced by wave focusing effects on E d , E u , and L u data products is of the order of 10 6 , 10 9 , and 10 10 , respectively. On this basis, the effects of sea-surface geometries on radiometric quantities have been investigated for different surface gravity waves. Data products from simulated radiometric profiles have finally been analyzed as a function of the deployment speed and sampling frequency of current free-fall systems in view of providing recommendations to improve measurement protocols.

© 2010 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 4, 2010
Revised Manuscript: July 30, 2010
Manuscript Accepted: August 2, 2010
Published: September 8, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Davide D’Alimonte, Giuseppe Zibordi, Tamito Kajiyama, and José C. Cunha, "Monte Carlo code for high spatial resolution ocean color simulations," Appl. Opt. 49, 4936-4950 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-26-4936


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Zibordi, J.-F. Berthon, and D. D’Alimonte, “An evaluation of radiometric products from fixed-depth and continuous in-water profile data from moderately complex waters,” J. Atmos. Ocean. Technol. 26, 91–106 (2009). [CrossRef]
  2. D. D’Alimonte and G. Zibordi, The JRC Data Processing System, Vol. 15 of SeaWiFS Technical Report Series, TM-2001-206892 (NASA Goddard Space Flight Center, 2001), pp. 52–56.
  3. C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Springer, 2004).
  4. N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335–341 (1949). [CrossRef] [PubMed]
  5. N. Metropolis, “The beginning of the Monte Carlo method,” Tech. Rep. (Stanford University, 1987).
  6. G. N. Plass and G. W. Kattawar, “Monte Carlo Calculations of radiative transfer in the Earth’s atmosphere-ocean system: I. Flux in the atmosphere and ocean,” J. Phys. Oceanogr. 2, 139–145 (1972). [CrossRef]
  7. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975). [CrossRef] [PubMed]
  8. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  9. Y. M. Govaerts and M. M. Verstraete, “Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media,” IEEE Trans. Geosci. Remote Sens. 36, 493–505 (1998). [CrossRef]
  10. K. I. Gjerstad, J. J. Stamnes, B. Hamre, J. K. Lotsberg, B. Yan, and K. Stamnes, “Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system,” Appl. Opt. 42, 2609–2622 (2003). [CrossRef] [PubMed]
  11. F. Pérez, I. Martín, F. X. Sillion, and X. Pueyo, “Acceleration of Monte Carlo path tracing in general environments,” in Proceedings of Pacific Graphics 2000 (2000).
  12. M. Pharr and P. Hanrahan, “Monte Carlo evaluation of non-linear scattering equations for subsurface reflection,” in SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley., 2000), pp. 75–84. [CrossRef]
  13. K. Ueki and P. N. Stevens, “Variance reduction techniques using adjoint Monte Carlo method in shielding problem,” J. Nucl. Sci. Technol. 16, 117–131 (1979). [CrossRef]
  14. J. R. Zaneveld, E. Boss, and P. Hwang, “The influence of coherent waves on the remotely sensed reflectance,” Opt. Express 9, 260–266 (2001). [CrossRef] [PubMed]
  15. J. R. V. Zaneveld, E. Boss, and A. Barnard, “Influence of surface waves on measured and modeled irradiance profiles,” Appl. Opt. 40, 1442–1449 (2001). [CrossRef]
  16. H. Wijesekera, W. S. Pegau, and T. Boyd, “Effect of surface waves on the irradiance distribution in the upper ocean,” Opt. Express 13, 9257–9264 (2005). [CrossRef] [PubMed]
  17. J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, “Small-scale effects of underwater Bubble clouds on ocean reflectance: 3-D modeling results,” Opt. Express 17, 11747–11752(2009). [CrossRef] [PubMed]
  18. M. Gimond, “Description and verification of an aquatic optics Monte Carlo model,” Environ. Modeling Software 19, 1065–1076 (2004). [CrossRef]
  19. M. F. Modest, “Backward Monte Carlo simulations in radiative heat transfer,” J. Heat Transfer 125, 57–62 (2003). [CrossRef]
  20. B. Light, G. A. Maykut, and T. C. Grenfell, “A two-dimensional Monte Carlo model of radiative transfer in sea ice,” J. Geophys. Res. 108, 3219–3227 (2003). [CrossRef]
  21. J. P. Doyle and G. Zibordi, “Monte Carlo modeling of optical transmission within 3-D shadowed field: application to large deployment structure,” Appl. Opt. 41, 4283–4306 (2002). [CrossRef] [PubMed]
  22. J. P. Doyle, S. B. Hooker, G. Zibordi, and D. vanderLinde, “Validation of an in-water, tower-shading correction scheme,” S.B.Hooker and E.R.Firestone, eds., NASA Tech. Note TM-2003-206892 (NASA Goddard Space Flight Center, 2002). [CrossRef]
  23. H. R. Gordon, “Ship perturbation of irradiance measurements at sea. 1: Monte Carlo simulations,” Appl. Opt. 24, 4172–4182(1985). [CrossRef] [PubMed]
  24. J. Piskozub, “Effect of ship shadow on in-water irradiance measurements,” Oceanologia 46, 103–112 (2004).
  25. R. A. Leathers, T. V. Downes, C. O. Davis, and C. D. Mobley, “Monte Carlo radiative transfer simulations for ocean optics: a practical guide,” Tech. Rep. (Naval Research Laboratory, Applied Optics Branch, 2004).
  26. C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, 1994).
  27. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep., SIO Reference 72–78 (Scripps Institution of Oceanography, 1972).
  28. E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40, 5503–5507 (2001). [CrossRef]
  29. J.-F. Berthon, E. Shybanov, M. E.-G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal Northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007). [CrossRef] [PubMed]
  30. G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994). [CrossRef]
  31. G. R. Fournier and M. Jonasz, “Computer-based underwater imaging analysis,” Proc. SPIE 3761, 62–70 (1999). [CrossRef]
  32. B. Bulgarelli, G. Zibordi, and J.-F. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42, 5365–5381 (2003). [CrossRef] [PubMed]
  33. W. Freda and J. Piskozub, “Improved method of Fournier–Forand marine phase function parameterization,” Opt. Express 15, 12763–12768 (2007). [CrossRef] [PubMed]
  34. G. R. Fournier, “Backscatter corrected Fournier-Forand phase function for remote sensing and underwater imaging performance evaluation,” Proc. SPIE 6615, 66150N (2007). [CrossRef]
  35. V. I. Haltrin, “One-parameter two-term Henyey–Greenstein phase function for light scattering in seawater,” Appl. Opt. 41, 1022–1028 (2002). [CrossRef] [PubMed]
  36. L. Henyey and J. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  37. A. W. Harrison and C. A. Coombes, “Angular distribution of clear sky short wavelength radiance,” Sol. Energy Mater. 40, 57–63 (1988). [CrossRef]
  38. G. Zibordi and K. J. Voss, “Geometrical and spectral distribution of sky radiance—comparison between simulations and field measurements,” Remote Sens. Environ. 27, 343–358(1989). [CrossRef]
  39. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  40. J. Escher and T. Schlurmann, “On the recovery of the free surface from the pressure within periodic traveling water waves,” J. Nonlin. Math. Phys. 15, 50–57 (2008). [CrossRef]
  41. N. L. Jones and S. G. Monismith, “Measuring short-period wind waves in a tidally forced environment with a subsurface pressure gauge,” Limnol. Oceanogr. Methods 5, 317–327(2007). [CrossRef]
  42. C. Tsai, M. Huang, F. Young, Y. Lin, and H. Li, “On the recovery of surface wave by pressure transfer function,” Ocean Eng. 32, 1247–1259 (2005). [CrossRef]
  43. T. Kajiyama, D. D’Alimonte, J. C. Cunha, and G. Zibordi, “High-performance ocean color Monte Carlo simulation in the geo-info project,” in Proceedings of the Eighth International Conference on Parallel Processing and Applied Mathematics,Lect. Notes Comput. Sci., R.Wyrzykowski, J.Dongarra, K.Karczewski, and J.Wasniewski, eds. (Springer, 2010), pp. 370–379.
  44. MATLAB is a product and trademark of The Mathworks Incorporated, Natick, Mass., USA.
  45. G. Zibordi, D. D’Alimonte, and J.-F. Berthon, “An evaluation of depth resolution requirements for optical profiling in coastal waters,” J. Atmos. Ocean. Technol. 21, 1059–1073 (2004). [CrossRef]
  46. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993). [CrossRef] [PubMed]
  47. C. D. Mobley and L. K. Sundman, “Hydrolight 5 and Ecolight 5 technical documentation,” Tech. Rep., Sequoia Scientific, Inc., 2700 Richards Road, Suite 107 Bellevue, Wash. 98005 (2010).
  48. S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002).
  49. D. D’Alimonte, “Detection of mesoscale eddy-related structures through iso-SST patterns,” IEEE Geosci. Remote Sens. Lett. 6, 189–193 (2009). [CrossRef]
  50. G. Zibordi, S. B. Hooker, J.-F. Berthon, and D. D’Alimonte, “Autonomous above-water radiance measurement from an offshore platform: a field assessment experiment,” J. Atmos. Ocean. Technol. 19, 808–819 (2002). [CrossRef]
  51. G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, F. Mélin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary radiometric products,” J. Atmos. Ocean. Technol. 26, 1634–1651(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited