OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 26 — Sep. 10, 2010
  • pp: 4963–4972

Application of time-division-multiplexed lasers for measurements of gas temperature and CH 4 and H 2 O concentrations at 30 kHz in a high-pressure combustor

Andrew W. Caswell, Thilo Kraetschmer, Keith Rein, Scott T. Sanders, Sukesh Roy, Dale T. Shouse, and James R. Gord  »View Author Affiliations

Applied Optics, Vol. 49, Issue 26, pp. 4963-4972 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1101 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two time-division-multiplexed (TDM) sources based on fiber Bragg gratings were applied to monitor gas temperature, H 2 O mole fraction, and CH 4 mole fraction using line-of-sight absorption spectroscopy in a practical high-pressure gas turbine combustor test article. Collectively, the two sources cycle through 14 wavelengths in the 1329 1667 nm range every 33 μs . Although it is based on absorption spectroscopy, this sensing technology is fundamentally different from typical diode-laser-based absorption sensors and has many advantages. Specifically, the TDM lasers allow efficient, flexible acquisition of discrete- wavelength information over a wide spectral range at very high speeds (typically 30 kHz ) and thereby provide a multiplicity of precise data at high speeds. For the present gas turbine application, the TDM source wavelengths were chosen using simulated temperature-difference spectra. This approach is used to select TDM wavelengths that are near the optimum values for precise temperature and species- concentration measurements. The application of TDM lasers for other measurements in high-pressure, turbulent reacting flows and for two-dimensional tomographic reconstruction of the temperature and species-concentration fields is also forecast.

© 2010 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.1030) Spectroscopy : Absorption

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 25, 2010
Revised Manuscript: July 19, 2010
Manuscript Accepted: August 12, 2010
Published: September 8, 2010

Andrew W. Caswell, Thilo Kraetschmer, Keith Rein, Scott T. Sanders, Sukesh Roy, Dale T. Shouse, and James R. Gord, "Application of time-division-multiplexed lasers for measurements of gas temperature and CH4 and H2O concentrations at 30 kHz in a high-pressure combustor," Appl. Opt. 49, 4963-4972 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. C. Rea and R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used As a fast temperature-measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988). [CrossRef] [PubMed]
  2. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, and M. E. Newfield, “Scanned-wavelength and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode-lasers,” AIAA J. 34, 489–493 (1996). [CrossRef]
  3. J. Hult, I. S. Burns, C. F. Kaminski, I. Rahinov, and J. W. Walewski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535–1543(2005). [CrossRef]
  4. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000). [CrossRef]
  5. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and application for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006). [CrossRef] [PubMed]
  6. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007). [CrossRef] [PubMed]
  7. S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14, 9299–9306 (2006). [CrossRef] [PubMed]
  8. T. Kraetschmer, C. Lan, and S. T. Sanders, “Multiwavelength, frequency-division-multiplexed light source based on dispersion mode locking,” IEEE Photonics Technol. Lett. 19, 1607–1609 (2007). [CrossRef]
  9. L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009). [CrossRef] [PubMed]
  10. L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, “Modeless operation of a wavelength-agile laser by high-speed cavity length changes,” Opt. Express 13, 1498–1507 (2005). [CrossRef] [PubMed]
  11. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004). [CrossRef] [PubMed]
  12. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005). [CrossRef] [PubMed]
  13. T. Kraetschmer, J. W. Walewski, and S. T. Sanders, “Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity,” Opt. Lett. 31, 3179–3181 (2006). [CrossRef] [PubMed]
  14. T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett. 33, 738–740 (2008). [CrossRef] [PubMed]
  15. T. Kraetschmer and S. T. Sanders, “Simple multiwavelength time-division multiplexed laser for H2O absorption measurements,” in Conference On Lasers And Electro-Optics/Quantum Electronics And Laser Science Conference And Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThL7. [PubMed]
  16. L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt. 47, 4186–4192 (2008). [CrossRef] [PubMed]
  17. L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt. 47, 3751–3759 (2008). [CrossRef] [PubMed]
  18. S. T. Sanders, “Designs and applications of hyperspectral light sources,” in Laser Applications to Chemical, Security, and Environmental Analysis (Optical Society of America, 2008), paper LWC1.
  19. S. T. Sanders, “Frequency combs and hyperspectral sources for absorption spectroscopy,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CMH3. [CrossRef]
  20. R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006). [CrossRef]
  21. E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384(1968). [CrossRef]
  22. J. A. Filipa, J. W. Walewski, and S. T. Sanders, “Optical beating in time-resolved spectroscopy. Part II: Strategies for spectroscopic sensing in the presence of optical beating,” Appl. Spectrosc. 62, 230–237 (2008). [CrossRef] [PubMed]
  23. R. J. Bartula and S. T. Sanders, “Estimation of signal noise induced by multimode optical fibers,” Opt. Eng. 47, 035002(2008). [CrossRef]
  24. R. J. Bartula, B. L. Conrad, and S. T. Sanders, “Estimation of noise induced by multimode optical fibers in optical sensor systems,” poster presented at the Gordon Research Conference on Laser Diagnostics for Combustion, Oxford, United Kingdom, 8 August 2007.
  25. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005). [CrossRef]
  26. L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure and absorber mole fraction from broadband spectra,” Appl. Opt. 46, 4117–4124 (2007). [CrossRef] [PubMed]
  27. L. A. Kranendonk, A. W. Caswell, C. L. Hagen, C. T. Neuroth, D. T. Shouse, J. R. Gord, and S. T. Sanders, “Temperature measurements in a gas-turbine-combustor sector rig using swept-wavelength absorption spectroscopy,” J. Propul. Power 25, 859–863 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited