OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 26 — Sep. 10, 2010
  • pp: 5005–5012

Pattern effect reduction in all-optical wavelength conversion using a two-electrode semiconductor optical amplifier

Peng Tian, Lirong Huang, Wei Hong, and Dexiu Huang  »View Author Affiliations


Applied Optics, Vol. 49, Issue 26, pp. 5005-5012 (2010)
http://dx.doi.org/10.1364/AO.49.005005


View Full Text Article

Enhanced HTML    Acrobat PDF (902 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-electrode semiconductor optical amplifier that has two sections and two separated electrodes is proposed for an all-optical wavelength converter. Pattern effect reduction based on dynamic gain compensation is theoretically investigated using a time-domain model that takes into account the carrier diffusion process between the two sections, and the Q factor of the converted light is calculated to evaluate pattern effects. Simulation results show that the Q factor is greatly improved when the section lengths and the currents are appropriately selected.

© 2010 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Optical Devices

History
Original Manuscript: April 20, 2010
Revised Manuscript: July 28, 2010
Manuscript Accepted: July 30, 2010
Published: September 9, 2010

Citation
Peng Tian, Lirong Huang, Wei Hong, and Dexiu Huang, "Pattern effect reduction in all-optical wavelength conversion using a two-electrode semiconductor optical amplifier," Appl. Opt. 49, 5005-5012 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-26-5005


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966(1996). [CrossRef]
  2. M. T. Hill, E. Tangdiongga, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Carrier recovery time in semiconductor optical amplifiers that employ holding beams,” Opt. Lett. 27, 1625–1627 (2002). [CrossRef]
  3. K. E. Zoiros, T. Siarkos, and C. S. Koukourlis, “Theoretical analysis of pattern effect suppression in semiconductor optical amplifier utilizing optical delay interferometer,” Opt. Commun. 281, 3648–3657 (2008). [CrossRef]
  4. M. Tsurusawa, K. Nishimura, and M. Usami, “First demonstration of pattern effect reduction in 40Gb/s semiconductor optical amplifier based all-optical switch utilizing transparent cw assist light,” Jpn. J. Appl. Phys. 41, 1199–1202 (2002). [CrossRef]
  5. H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, “Effect of copropagating and counterpropagating directions on a semiconductor optical amplifier—Mach-Zehnder interferometer based wavelength converter using a continuous-wave assist light,” Opt. Lett. 30, 1716–1718 (2005). [CrossRef] [PubMed]
  6. R. Gutierrez-Castrejon and A. Filios, “Pattern-effect reduction using a cross-gain modulated holding beam in semiconductor optical in-line amplifier,” J. Lightwave Technol. 24, 4912–4917 (2006). [CrossRef]
  7. J. Wang, A. Marculescu, J. S. Li, P. Vorreau, S. Tzadok, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photonics Technol. Lett. 19, 1955–1957 (2007). [CrossRef]
  8. Z. H. Li, Y. Dong, C. Lu, Y. J. Wen, Y. X. Wang, W. S. Hu, and T. H. Cheng, “Comparison of cross-gain modulation effect of Manchester-duobinary, RZ-DPSK, NRZ-DPSK, RZ, and NRZ modulation formats in SOAs,” IEEE Photonics Technol. Lett. 18, 2680–2682 (2006). [CrossRef]
  9. R. J. Manning, X. Yang, R. P. Webb, R. Giller, F. C. Garcia Gunning, and A. D. Ellis, “The ‘turbo-switch’—a novel technique to increase the high-speed response of SOAs for wavelength conversion,” in Optical Fiber Communication Conference (OSA, 2006). [CrossRef]
  10. S. Ma, H. Sun, Z. Chen, and N. K. Dutta, “High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers,” Opt. Express 17, 18469–18477(2009). [CrossRef]
  11. E. B. Zhou, F. Oehman, C. Cheng, X. L. Zhang, W. Hong, J. Mork, and D. X. Huang, “Reduction of patterning effects in SOA-based wavelength converters by combining cross-gain and cross-absorption modulation,” Opt. Express 16, 21522–21528 (2008). [CrossRef] [PubMed]
  12. H. S. Kim, B. S. Choi, K. S. Kim, D. C. Kim, O. K. Kwon, and D. K. Oh, “Improvement of modulation bandwidth in multisection RSOA for colorless WDM-PON,” Opt. Express 17, 16372–16378 (2009). [CrossRef] [PubMed]
  13. P. Tian, L. Huang, L. Yan, and D. Huang, “Chirp characteristics of wavelength converter in multi-electrode semiconductor optical amplifiers,” Proc. SPIE 7279, 727919 (2008). [CrossRef]
  14. K. Djordjev, S. J. Choi, W. J. Choi, S. J. Choi, I. Kim, and P. D. Dapkus, “Two-segment spectrally inhomogeneous traveling wave semiconductor optical amplifiers applied to spectral equalization,” IEEE Photonics Technol. Lett. 14, 603–605(2002). [CrossRef]
  15. L. Huang, S. Yu, and D. Huang, “Gain spectrum and saturation characteristics of two-segment semiconductor optical amplifier,” Proc. SPIE 7135, 71352C (2008). [CrossRef]
  16. A. Sharaiha and M. Guegan, “Equivalent circuit model for multi-electrode semiconductor optical amplifiers and analysis of inline photodetection in bidirectional transmissions,” J. Lightwave Technol. 18, 700–707 (2000). [CrossRef]
  17. K. Inoue, “Technique to compensate waveform distortion in a gain-saturated semiconductor optical amplifier using a semiconductor saturable absorber,” Electron. Lett. 34, 376–378(1998). [CrossRef]
  18. M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37, 439–447 (2001). [CrossRef]
  19. M. L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi, and Y. Ueno, “Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches,” Opt. Express 14, 331–347 (2006). [CrossRef] [PubMed]
  20. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Wiley, 2005), Chap. 4. [CrossRef] [PubMed]
  21. M. J. Connelly, “Wideband dynamic numerical model of a tapered buried ridge strip semiconductor optical amplifier gate,” IEE Proc. -Circuits Devices Syst. 149, 173–178 (2002). [CrossRef]
  22. D. X. Zhu, S. Dubovitsky, W. H. Steier, J. Burger, D. Tishinin, K. Uppal, and P. D. Dapkus, “Ambipolar diffusion coefficient and carrier lifetime in a compressively strained InGaAsP multiple quantum well device,” Appl. Phys. Lett. 71, 647–649(1997). [CrossRef]
  23. M. J. Connelly, “Corrections to “Wideband semiconductor optical amplifier steady-state numerical model”,” IEEE J. Quantum Electron. 37, 1103–1103 (2001). [CrossRef]
  24. J. J. Dong, X. L. Zhang, J. Xu, and D. X. Huang, “All-optical ultrawideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier,” Opt. Lett. 32, 2158–2160 (2007). [CrossRef] [PubMed]
  25. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited