OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 27 — Sep. 20, 2010
  • pp: 5067–5075

Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm

Jean-François Vandenrijt and Marc P. Georges  »View Author Affiliations

Applied Optics, Vol. 49, Issue 27, pp. 5067-5075 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electronic speckle pattern interferometry and digital holographic interferometry are investigated at long infrared wavelengths. Using such wavelengths allows one to extend the measurement range and decrease the sensitivity of the techniques to external perturbations. We discuss the behavior of reflection by the object surfaces due to the long wavelength. We have developed different experimental configurations associating a CO 2 laser emitting at 10.6 μ m and microbolometer arrays. Phase-shifting in-plane and out-of-plane electronic speckle pattern interferometry and lensless digital holographic interferometry are demonstrated on rotation measurements of a solid object.

© 2010 Optical Society of America

OCIS Codes
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(120.6165) Instrumentation, measurement, and metrology : Speckle interferometry, metrology
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 2, 2010
Manuscript Accepted: August 3, 2010
Published: September 13, 2010

Jean-François Vandenrijt and Marc P. Georges, "Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm," Appl. Opt. 49, 5067-5075 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kreis, Holographic Interferometry—Principles and Methods (Akademie Verlag, 1996).
  2. R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).
  3. C. Thizy, Ph. Lemaire, M. Georges, P. Rochus, J.-P. Collette, R. John, K. Seifart, H. Bergander, and G. Coe, “Comparison between finite element calculations and holographic interferometry measurements, of the thermo-mechanical behaviour of satellite structures in composite materials,” in Photorefractive Effects, Materials and Devices, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), Vol. 99, pp. 700–706.
  4. C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005). [CrossRef]
  5. H. J. Caulfield, Q. B. He, and M. P. Schamschula, “Reduced coherence, stability and temporal overlap requirements for holography,” Appl. Opt. 30, 4170–4171 (1991). [CrossRef] [PubMed]
  6. P. Hariharan, Optical Holography. Principles, Techniques and Applications (Cambridge University, 1996), and references cited therein.
  7. C. Thizy, M. Georges, Ph. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006). [CrossRef]
  8. F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000). [CrossRef]
  9. M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009). [PubMed]
  10. J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10μm,” Proc. SPIE 6616, 66162Q1 (2007).
  11. J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6μm,” Appl. Phys. Lett. 15, 123–125 (1969). [CrossRef]
  12. W. A. Simpson and W. E. Deeds, “Real-time visual reconstruction of infrared holograms,” Appl. Opt. 9, 499–501 (1970). [CrossRef] [PubMed]
  13. S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484 (1971). [CrossRef]
  14. R. R. Roberts and T. D. Black, “Infrared holograms recorded at 10.6μm and reconstructed at 0.6328μm,” Appl. Opt. 15, 2018–2019 (1976). [CrossRef] [PubMed]
  15. M. Rioux, M. Blanchard, M. Cornier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6μm,” Appl. Opt. 16, 1876–1879 (1977). [CrossRef] [PubMed]
  16. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6μm,” Appl. Phys. Lett. 31, 602–603 (1977). [CrossRef]
  17. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978). [CrossRef] [PubMed]
  18. J. Lewandowsky, B. Mongeau, and M. Cormier, “Real time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984). [CrossRef]
  19. R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6mm,” Proc. SPIE 2042, 259–263 (1994).
  20. R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301 (2000). [CrossRef]
  21. S. Calixto, “Albumen as a relief recording media for spatial distributions of infrared radiation. Fabrication of interference gratings and microlenses,” Appl. Opt. 42, 259–263(2003). [CrossRef] [PubMed]
  22. O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 187–192(1984). [CrossRef]
  23. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6μm,” Opt. Commun. 215, 257–262 (2003). [CrossRef]
  24. P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001). [CrossRef]
  25. S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1445–1449 (2008). [CrossRef]
  26. J. L. Tissot, “IR detection with uncooled focal plane arrays. State-of-the-art and trends,” Optoelectron. Rev. 12, 105–109(2004).
  27. N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Appl. Opt. 47, A7–A12(2008). [CrossRef] [PubMed]
  28. B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008). [CrossRef]
  29. I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003). [CrossRef]
  30. J. C. Stover, Optical Scattering—Measurement and Analysis (McGraw–Hill, 1990).
  31. K. J. Gåsvik, Optical Metrology (Wiley, 1987).
  32. T. Maack, R. Kowarschik, and G. Notni, “Optimum lens aperture in phase-shifting speckle interferometric setups for maximum accuracy of phase measurement,” Appl. Opt. 36, 6217–6224 (1997). [CrossRef]
  33. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008). [CrossRef]
  34. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef] [PubMed]
  35. T. Kreis and W. Jüptner, “Suppression of the DC term in digital holography,” Opt. Eng. 36, 2357–2360 (1997). [CrossRef]
  36. Ø. Skotheim, “HoloVision: a software package for reconstruction and analysis of digitally sampled holograms,” Proc. SPIE 4933, 311–316 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited