OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 27 — Sep. 20, 2010
  • pp: 5103–5109

Determination of linear displacement by envelope detection with maximum likelihood estimation

Kuo-Chen Lang and Hui-Kang Teng  »View Author Affiliations


Applied Optics, Vol. 49, Issue 27, pp. 5103-5109 (2010)
http://dx.doi.org/10.1364/AO.49.005103


View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate in this report an envelope detection technique with maximum likelihood estimation in a least square sense for determining displacement. This technique is achieved by sampling the amplitudes of quadrature signals resulted from a heterodyne interferometer so that the resolution of displacement measurement of the order of λ / 10 4 is experimentally verified. A phase unwrapping procedure is also described and experimentally demonstrated and indicates that the unambiguity range of displacement can be measured beyond a single wavelength.

© 2010 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 14, 2010
Revised Manuscript: August 11, 2010
Manuscript Accepted: August 13, 2010
Published: September 15, 2010

Citation
Kuo-Chen Lang and Hui-Kang Teng, "Determination of linear displacement by envelope detection with maximum likelihood estimation," Appl. Opt. 49, 5103-5109 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-27-5103


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. X. Sun, M. M. Fejer, E. K. Gustafson, and B. L. Byer, “Balanced heterodyne signal extraction in a post-modulated Sagnac interferometer at low frequency,” Opt. Lett. 22, 1485–1487 (1997). [CrossRef]
  2. F. Acernese, P. Amico, M. Al-Shourbagy, S. Aoudia, S. Avino, D. Babusci, G. Ballardin, R. Barille, F. Barone, L. Barsotti, M. Barsuglia, F. Beauville, M. A. Bizouard, C. Boccara, F. Bondu, L. Bosi, C. Bradaschia, S. Braccini, A. Brillet, V. Brisson, D. Buskulic, E. Calloni, E. Campagna, F. Cavalieri, R. Cavalieri, G. Cella, E. Chassande-Mottin, C. Corda, A.-C. Clapson, F. Cleva, J.-P. Coulon, E. Cuoco, V. Dattilo, M. Davier, R. De Rosa, L. Di Fiore, A. Di Virgilio, B. Dujardin, A. Eleuteri, D. Enard, I. Ferrante, F. Fidecaro, I. Fiori, R. Flaminio, J.-D. Fournier, S. Frasca, F. Frasconi, A. Freise, L. Gammaitoni, A. Gennai, A. Giazotto, G. Giordano, L. Giordano, R. Gouaty, D. Grosjean, G. Guidi, S. Hebri, H. Heitmann, P. Hello, P. Heusse, L. Holloway, S. Kreckelbergh, P. La Penna, V. Loriette, M. Loupias, G. Losurdo, J.-M. Mackowski, E. Majorana, C. N. Man, M. Manovani, F. Marchesoni, E. Marchetti, F. Marion, J. Marque, F. Martelli, A. Masserot, M. Mazzoni, L. Milano, C. Moins, J. Moreau, N. Morgado, B. Mours, J. Pacheco, A. Pai, C. Palomba, F. Paoletti, S. Pardi, A. Pasqualetti, R. Passaquieti, D. Passuello, B. Perniola, F. Piergiovanni, L. Pinard, R. Poggiani, M. Punturo, P. Puppo, K. Qipiani, P. Rapagnani, V. Reita, A. Remillieux, F. Ricci, I. Ricciardi, P. Ruggi, G. Russo, S. Solimeno, S. Solimeno, A. Spallicci, R. Stanga, R. Taddei, D. Tombolato, M. Tonelli, A. Toncelli, E. Tournefier, F. Travasso, G. Vajente, D. Verkindt, F. Vetrano, A. Viceré, J.-Y. Vinet, H. Vocca, M. Yvert, and Z. Zhang,, “Length sensing and control in the Virgo gravitational wave interferometer,” IEEE Trans. Instrum. Meas. 55, 1985–1995(2006). [CrossRef]
  3. V. Korpelainen and A. Lassila, “Calibration of a commercial AFM: traceability for a coordinate system,” Meas. Sci. Technol. 18, 395–403 (2007). [CrossRef]
  4. G. N. Peggs and A. Yacoot, “A review of recent work in sub-nanometre displacement measurement using optical and X-ray interferometry,” Phil. Trans. R. Soc. London 360, 953–968 (2002). [CrossRef]
  5. P. M. B. S. Girão, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1, 322–331 (2001). [CrossRef]
  6. H. Hu, X. Qiu, J. Wang, A. Ju, and Y. Zhang, “Subdivision and direction recognition of λ/16 of orthogonal fringes for nanometric measurement,” Appl. Opt. 48, 6479–6484 (2009). [CrossRef] [PubMed]
  7. Z. Chang, H. Gao, Z. Zhang, H. Huang, and J. Zhu, “Study of a dual-frequency laser interferometer with unique optical subdivision techniques,” Appl. Opt. 45, 2246–2250(2006). [CrossRef]
  8. P. J. de Groot, “Extending the unambiguous range of two-color interferometers,” Appl. Opt. 33, 5948–5953 (1994). [CrossRef] [PubMed]
  9. R. Onodera, M. Sakuyama, and Y. Ishii, “Fringe counting method for synthetic phase with frequency-modulated laser diodes,” Rev. Sci. Instrum. 78, 093104 (2007). [CrossRef] [PubMed]
  10. B. Chen, X. L. Yan, X. Yao, T. Yang, D. Li, W. Dong, C. Li, and W. Tang, “Development of a laser synthetic wavelength interferometer for larger displacement measurement with nanometer accuracy,” Opt. Express 18, 3000–3010(2010). [CrossRef] [PubMed]
  11. H. K. Teng and K. C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280, 16–22 (2007). [CrossRef]
  12. J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1792–1801 (2007). [CrossRef] [PubMed]
  13. K. Prince and I. T. Monroy, “All-optical envelope detection and fiber transmission of wireless signals by external injection of a DFB laser,” IEEE Photonics Technol. Lett. 20, 1317–1319(2008). [CrossRef]
  14. D. A. Rice, V. Venkatachalam, and M. J. Wegmann, “A simple envelope detector,” IEEE Trans. Instrum. Meas. 37, 223–226(1988). [CrossRef]
  15. D. W. Robinson, “Phase unwrapping methods,” in Interferogram Analysis, D.W.Robinson and G.T.Reid, eds. (Institute of Physics, 1993), Chap. 6.
  16. R. M. Goldstein, H. A. Ebker, and C. L. Werner, “Satellite radar interferometry: two dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988). [CrossRef]
  17. T. T. Soong, Fundamentals for Probability and Statistics for Engineers (Wiley, 2004).
  18. R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999). [CrossRef]
  19. P. R. Bevington, “Propagation of errors,” in Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill2002), pp. 56–65.
  20. H. K. Teng and K. C. Lang, “Dark fringe operation and noise reduction with optical subtraction approach and power allocation,” Opt. Commun. 283, 2394–2401 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited