OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 27 — Sep. 20, 2010
  • pp: 5163–5168

Toward a photoconducting semiconductor RF optical fiber antenna array

R. Davis, R. Rice, A. Ballato, T. Hawkins, P. Foy, and J. Ballato  »View Author Affiliations

Applied Optics, Vol. 49, Issue 27, pp. 5163-5168 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, optical fibers comprising a crystalline semiconductor core in a silica cladding have been successfully drawn by a conventional drawing process. These fibers are expected to exhibit a photoconductive response when illuminated by photons more energetic than the band gap of the core. In the photoconducting state, such a fiber can be expected to support driven RF currents so as to function as an antenna element, much as a plasma antenna. In this paper, we report the first device-related results on a crystalline semiconductor core optical fiber potentially useful in a photoconducting optical fiber antenna array; namely, optically induced changes to the electrical conductivity of a glass-clad germanium-core optical fiber. Since DC photoconduction measurements were masked by a photovoltaic effect, RF measurements at 5 MHz were used to determine the magnitude of the induced photoconductive effect. The observed photoconductivity, though not large in the present experiment, was comparable to that measured for the bulk crystals from which the fibers were drawn. The absorbed pumping light generated photo-carriers, thereby transforming the core from a dielectric material to a conductor. This technology could thus enable a class of transient antenna elements useful in low observable and reconfigurable antenna array applications.

© 2010 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(160.2290) Materials : Fiber materials
(160.5140) Materials : Photoconductive materials
(160.6000) Materials : Semiconductor materials
(260.5150) Physical optics : Photoconductivity

ToC Category:

Original Manuscript: April 21, 2010
Manuscript Accepted: August 18, 2010
Published: September 17, 2010

R. Davis, R. Rice, A. Ballato, T. Hawkins, P. Foy, and J. Ballato, "Toward a photoconducting semiconductor RF optical fiber antenna array," Appl. Opt. 49, 5163-5168 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008). [CrossRef]
  2. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17, 8029–8035 (2009). [CrossRef] [PubMed]
  3. J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. Rao, and R. Rice, “Binary III–V Semiconductor Core Optical Fiber,” Opt. Express 18, 4972–4980(2010). [CrossRef] [PubMed]
  4. G. Borg and J. Harris, “Application of plasma columns to radio frequency antennas,” Appl. Phys. Lett. 74, 3272–3274 (1999). [CrossRef]
  5. I. Alexeff, T. Anderson, S. Parameswaran, E. Pradeep, J. Hulloli, and P. Hulloli, “Experimental and theoretical results with plasma antennas,” IEEE Trans. Plasma Sci. 34, 166–172(2006). [CrossRef]
  6. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34, 6848–6854 (1995). [CrossRef] [PubMed]
  7. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009). [CrossRef]
  8. D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010). [CrossRef]
  9. D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975). [CrossRef]
  10. C. H. Lee, “Picosecond optoelectronic switching in GaAs,” Appl. Phys. Lett. 30, 84–86 (1977). [CrossRef]
  11. J. R. Morris and Y. R. Shen, “Theory of far-infrared generation using optical mixing,” Phys. Rev. A 15, 1143–1156 (1977). [CrossRef]
  12. G. Mourou, C. V. Stancampiano, and D. Blumenthal, “Picosecond microwave pulse generation,” Appl. Phys. Lett. 38, 470–472 (1981). [CrossRef]
  13. G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phys. Lett. 39, 295–296 (1981). [CrossRef]
  14. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286(1984). [CrossRef]
  15. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling III, N. J. Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986). [CrossRef]
  16. J. R. Karin, P. M. Downey, and R. J. Martin, “Radiation from picosecond photoconductors in microstrip transmission lines,” IEEE J. Quantum Electron. QE-22, 677–681 (1986). [CrossRef]
  17. A. P. DeFonzo and C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212–214 (1987). [CrossRef]
  18. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. QE-24, 255–260 (1988). [CrossRef]
  19. C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480–1482 (1988). [CrossRef]
  20. Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989). [CrossRef]
  21. B. B. Hu, J. T. Darrow, X-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990). [CrossRef]
  22. J. T. Darrow, X-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 25–27 (1991). [CrossRef]
  23. N. Froberg, M. Mack, B. B. Hu, J. T. Darrow, X-C. Zhang, and D. H. Auston, “500GHz electrically steerable photoconducting antenna array,” Appl. Phys. Lett. 58, 446–448 (1991). [CrossRef]
  24. X-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett. 59, 768–770 (1991). [CrossRef]
  25. J. T. Darrow, X-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992). [CrossRef]
  26. N. M. Froberg, B. B. Hu, X-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992). [CrossRef]
  27. B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302–2312 (1992). [CrossRef]
  28. D. W. Liu and P. H. Carr, “Optically-excited photoconducting antennas for generating ultra-wideband pulses,” in Ultra-Wideband, Short-Pulse ElectromagneticsC.E.Baum, L.Carin, and A.P.Stone, eds. (Plenum, 1997), part 2, ISBN: 978-0-3064-5593-3 Vol. 3, pp. 9–16.
  29. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078(1997). [CrossRef]
  30. Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39 (part 1), 96–100 (2000). [CrossRef]
  31. J. R. Reid, J. S. Derov, and P. H. Carr, “Spatially light modulated reconfigurable photoconductive antenna,” U.S. patent 6,177,909 (23 January 2001).
  32. J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001). [CrossRef]
  33. D.Mittleman, ed., Sensing with Terahertz Radiation (Springer, 2003), ISBN: 978-3-5404-3110-7.
  34. Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004). [CrossRef]
  35. M. J. Evans and W. R. Tribe, “Electrodes on a photoconductive substrate for generation and detection of terahertz radiation,” U.S. patent 7,609,208 (27 October 2009).
  36. A. Sengupta, “Novel characterization of materials using THz spectroscopic techniques,” Ph.D. dissertation in applied physics (New Jersey Institute of Technology and Rutgers, The State University of NJ–Newark, 2006), Chap. 2. http://archives.njit.edu/vol01/etd/2000s/2006/njit-etd2006-084/njit-etd2006-084.pdf.
  37. G. Franceschetti and C. H. Papas, “Pulsed antennas,” IEEE Trans. Antennas Propag. AP-22, 651–661 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited