OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 27 — Sep. 20, 2010
  • pp: 5169–5174

Semianalytic pulsed coherent laser radar equation for coaxial and apertured systems using nearest Gaussian approximation

Shumpei Kameyama, Toshiyuki Ando, Kimio Asaka, and Yoshihito Hirano  »View Author Affiliations

Applied Optics, Vol. 49, Issue 27, pp. 5169-5174 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a semianalytic pulsed coherent laser radar (CLR) equation for coaxial and apertured systems. It combines the conventional CLR equation, numerical Fresnel integration (NFI), and nearest Gaussian approximation, using correction factors that correspond to beam truncation. The range dependence of the signal-to-noise ratio obtained by this semianalytic equation was found to agree well with the precise NFI solution for not only the focal range, but also the near-field range. Furthermore, the optimum beam truncation condition depending on the atmospheric refractive index structure constant is shown. The derived equation is useful for precisely predicting the CLR performance simply by its semianalytic expression.

© 2010 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: March 22, 2010
Revised Manuscript: August 7, 2010
Manuscript Accepted: August 24, 2010
Published: September 17, 2010

Shumpei Kameyama, Toshiyuki Ando, Kimio Asaka, and Yoshihito Hirano, "Semianalytic pulsed coherent laser radar equation for coaxial and apertured systems using nearest Gaussian approximation," Appl. Opt. 49, 5169-5174 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996). [CrossRef]
  2. J. M. Vaughhan, K. O. Steinvall, C. Werner, and P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226(1996). [CrossRef]
  3. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, and R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989). [CrossRef] [PubMed]
  4. T. J. Kane, W. J. Kozlovsky, R. L. Byer, and C. E. Byvik, “Coherent laser radar at 1.06µm using Nd:YAG lasers,” Opt. Lett. 12, 239–241 (1987). [CrossRef] [PubMed]
  5. C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55µm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000). [CrossRef]
  6. G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt. 41, 6442–6450(2002). [CrossRef] [PubMed]
  7. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007). [CrossRef] [PubMed]
  8. A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009). [CrossRef]
  9. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1µm using Tm, Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef] [PubMed]
  10. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993). [CrossRef]
  11. R. M. Huffaker, A. V. Jelalian, and J. A. L. Thompson, “Laser-Doppler system for detection of aircraft trailing vortices,” Proc. IEEE 58, 322–326 (1970). [CrossRef]
  12. J. W. Bilbro, G. Fichtl, D. Fitzjarrald, and M. Krause, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meteorol. Soc. 65, 348–359 (1984). [CrossRef]
  13. J. W. Bilbro, C. Dimarzio, D. Fitzjarrald, S. Johnson, and W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986). [CrossRef] [PubMed]
  14. R. Frehlich, “Velocity error for coherent Doppler lidar with pulse accumulation,” J. Atmos. Oceanic Tech. 21, 905–920(2004). [CrossRef]
  15. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Remote Sens. 47, 3560–3569 (2009). [CrossRef]
  16. C. M. Sonnenschein and F. A. Horrigan, “Signal-to noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604(1971). [CrossRef] [PubMed]
  17. R. G. Frehlich and M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  18. P. Salamitou, F. Darde, and P. H. Flamant, “A semi-analytic approach for coherent laser radar system efficiency,” J. Mod. Opt. 41, 2101–2113 (1994). [CrossRef]
  19. Y. Zhao, M. J. Post, and R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1: theory,” Appl. Opt. 29, 4111–4119 (1990). [CrossRef] [PubMed]
  20. B. J. Rye and R. G. Frehlich, “Optimal truncation and optical efficiency pf an apertured coherent lidar focused on an incoherent backscatter target,” Appl. Opt. 31, 2891–2899(1992). [CrossRef] [PubMed]
  21. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10µm,” Appl. Opt. 35, 7117–7127 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited