OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5212–5216

Broad spectrum measurement of the birefringence of an isothiocyanate based liquid crystal

Oksana Trushkevych, Huan Xu, Tianxin Lu, J. Axel Zeitler, Rakchanok Rungsawang, Felix Gölden, Neil Collings, and William A. Crossland  »View Author Affiliations

Applied Optics, Vol. 49, Issue 28, pp. 5212-5216 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (408 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tunable materials with high anisotropy of refractive index and low loss are of particular interest in the microwave and terahertz range. Nematic liquid crystals are highly sensitive to electric and magnetic fields and may be designed to have particularly high birefringence. In this paper we investigate birefringence and absorption losses in an isothiocyanate based liquid crystal (designed for high anisotropy) in a broad range of the electromagnetic spectrum, namely 0.1 4 GHz , 30 GHz , 0.5 1.8 THz , and in the visible and near-infrared region ( 400 nm 1600 nm ). We report high birefringence ( Δ n = 0.19 0.395 ) and low loss in this material. This is attractive for tunable microwave and terahertz device applications.

© 2010 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6550) Spectroscopy : Spectroscopy, visible
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: August 27, 2010
Manuscript Accepted: August 30, 2010
Published: September 20, 2010

Oksana Trushkevych, Huan Xu, Tianxin Lu, J. Axel Zeitler, Rakchanok Rungsawang, Felix Gölden, Neil Collings, and William A. Crossland, "Broad spectrum measurement of the birefringence of an isothiocyanate based liquid crystal," Appl. Opt. 49, 5212-5216 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Nose, S. Sato, K. Mizuno, J. Bae, and T. Nozokido, “Refractive index of nematic liquid crystals in the submillimeter wave region,” Appl. Opt. 36, 6383–6387 (1997). [CrossRef]
  2. H. Fujikake, T. Kuki, H. Kamoda, F. Sato, and T. Nomoto, “Voltage-variable microwave delay line using ferroelectric liquid crystal with aligned submicron polymer fibers,” Appl. Phys. Lett. 83, 1815–1817 (2003). [CrossRef]
  3. C. Weil, S. Muller, P. Scheele, P. Best, G. Lussem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39, 1732–1734(2003). [CrossRef]
  4. Y. Utsumi, T. Kamei, and R. Naito, “Measurements of effective dielectric permittivity of microstrip-line-type liquid crystal devices using inductive coupled ring resonator,” Electron. Lett. 39, 849–851 (2003). [CrossRef]
  5. F. Yang and J. R. Sambles, “Microwave liquid-crystal variable phase grating,” Appl. Phys. Lett. 85, 2041–2043 (2004). [CrossRef]
  6. T. Nose, M. Honma, T. Nozokido, and K. Mizuno, “Simple method for the determination of refractive indices and loss parameters for liquid-crystal materials in the millimeter-wave region,” Appl. Opt. 44, 1150–1155 (2005). [CrossRef] [PubMed]
  7. F. Goelden, A. Lapanik, A. Gaebler, S. Mueller, W. Haase, and R. Jakoby, “Systematic investigation of nematic liquid crystal mixtures at 30GHz,” in LEOS Summer Topical Meetings, 2007 Digest of the IEEE (IEEE, 2007), pp. 202–203. [CrossRef]
  8. H. Xu, O. Trushkevych, N. Collings, and W. A. Crossland, “Measurement of dielectric permittivity modulation of some liquid crystals for microwave applications,” Mol. Cryst. Liq. Cryst. 502, 235–244 (2009). [CrossRef]
  9. C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006). [CrossRef]
  10. I.-C. Ho, C.-L. Pan, C.-F. Hsieh, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Solc filter,” Opt. Lett. 33, 1401–1403(2008). [CrossRef] [PubMed]
  11. C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008). [CrossRef] [PubMed]
  12. T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14, 77–79 (2004). [CrossRef]
  13. R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Waves 30, 1139–1147 (2009). [CrossRef]
  14. S. Mueller, F. Goelden, P. Scheele, M. Wittek, C. Hock, and R. Jakoby, “Passive phase shifter for W-band applications using liquid crystals,” in Proceedings 36th European Microwave Conference (2006), pp.306–309.
  15. F. Goelden, A. Gaebler, A. Manabe, M. Goebel, S. Mueller, and R. Jakoby, “Novel tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. (to be published).
  16. S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature controlled coaxial transmission line,” IEEE Trans. Microwave Theory Tech. 53, 1937–1945 (2005). [CrossRef]
  17. S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dambrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003). [CrossRef]
  18. L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics (Wiley, 2004). [CrossRef]
  19. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007). [CrossRef]
  20. J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review,” J. Pharm. Pharmacol. 59, 209–223 (2007). [CrossRef] [PubMed]
  21. E. P. J. Parrott, J. A. Zeitler, T. Friščic´, M. Pepper, W. Jones, G. M. Day, and L. F. Gladden, “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Cryst. Growth Design 9, 1452–1460 (2009). [CrossRef]
  22. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15, 4335–4350 (2007). [CrossRef] [PubMed]
  23. S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915(1984). [CrossRef] [PubMed]
  24. R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008). [CrossRef]
  25. K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. J. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14, 327–337 (1993). [CrossRef]
  26. S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008). [CrossRef]
  27. S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4462–4465 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited