OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5226–5235

All-optical clocked delay flip-flop using a single terahertz optical asymmetric demultiplexer -based switch: a theoretical study

Tanay Chattopadhyay  »View Author Affiliations

Applied Optics, Vol. 49, Issue 28, pp. 5226-5235 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (972 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A flip-flop (FF) is a kind of latch and the simplest form of memory device, which stores various values either temporarily or permanently. Optical FF memories form a fundamental building block for all- optical packet switches in next-generation communication networks. An all-optical clocked delay FF using a single terahertz optical asymmetric demultiplexer-based interferometric switch is proposed and described. Numerical simulation results are also reported.

© 2010 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(200.0200) Optics in computing : Optics in computing
(200.4660) Optics in computing : Optical logic
(210.0210) Optical data storage : Optical data storage
(210.4680) Optical data storage : Optical memories
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Optics in Computing

Original Manuscript: June 1, 2010
Revised Manuscript: August 10, 2010
Manuscript Accepted: August 16, 2010
Published: September 21, 2010

Tanay Chattopadhyay, "All-optical clocked delay flip-flop using a single terahertz optical asymmetric demultiplexer-based switch: a theoretical study," Appl. Opt. 49, 5226-5235 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Elfaramawy and A. Award, “All-optical logic circuits based on the non-linear properties of the semiconductor optical amplifier,” in Ninth IEEE Symposium on Computers and Communications 2004 (IEEE, 2004), Vol. 1, pp. 270–275.
  2. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988). [CrossRef] [PubMed]
  3. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993). [CrossRef]
  4. G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000). [CrossRef]
  5. R. Hess, M. C. Gross, W. Vogt, E. Gamper, P. A. Besse, M. Düelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 100 Gb/s signal with monolithic integrated high-performance Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 10, 165–167 (1998). [CrossRef]
  6. K. E. Zoiros, C. Botsiaris, R. Chasioti, and C. S. Koukorlis, “Evaluation and optimization of SOA-based UNI Q-factor,” in 9th International Conference on Transparent Optical Networks (ICTON, 2007), Vol. 4, pp. 271–274. [CrossRef]
  7. T. Houbavlis and K. E. Zoiros, “Numerical simulation of semiconductor optical amplifier assisted Sagnac gate and investigation of its switching characteristics,” Opt. Eng. 43, 1622–1627 (2004). [CrossRef]
  8. I. Glesk, R. J. Runser, and P. R. Prucnal, “New generation of devices for all-optical communications,” Acta Phys. Slovaca 51, 151–162 (2001).
  9. R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14, 3204–3216 (1997). [CrossRef]
  10. I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994). [CrossRef]
  11. H. Le. Minh, Z. Ghassemlooy, and W. P. Ng, “Characterization and performance analysis of a TOAD switch employing a dual control pulse scheme in high-speed OTDM demultiplexer,” IEEE Commun. Lett. 12, 316–318 (2008). [CrossRef]
  12. K. L. Hall and B. S. Robinson, “Bit error rate characterization of 100 Gb/s all optical demultiplexers,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 214–215.
  13. A. J. Poustie and K. J. Blow, “Demonstration of an all-optical Fredkin gate,” Opt. Commun. 174, 317–320 (2000). [CrossRef]
  14. V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003). [CrossRef]
  15. M. Shirakawa, T. Takemori, and J. Ohtsubo, “Optical latches based on a selector logic,” Opt. Commun. 119, 505–512(1995). [CrossRef]
  16. M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip-flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001). [CrossRef]
  17. M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209. [CrossRef] [PubMed]
  18. M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Fast optical flip-flop by use of Mach–Zehnder Interferometers,” Microw. Opt. Technol. Lett. 31, 411–415 (2001). [CrossRef]
  19. M. T. Hill, H. J. S. Dorren, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, T. de Vries, J. H. C. Van Zantvoort, E. Smalbrugge, and Y. S. Oei, “Coupled Mach-Zehnder interferometer memory element,” Opt. Lett. 30, 1710–1712 (2005). [CrossRef] [PubMed]
  20. H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003). [CrossRef]
  21. F. Ramos, E. Kehayas, J. M. Martinez, R. Clavero, J. Marti, L. Stampoulidis, D. Tsiokos, H. Avramopoulos, J. Zhang, P. V. Holm-Nielson, N. Chi, P. Jeppesen, Y. Liu, H. J. S. Dorren, R. Van Caenegem, D. Colle, M. Pickavet, and B. Riposati, “IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops,” J. Lightwave Technol. 23, 2993–3011 (2005). [CrossRef]
  22. S. Zhang, Z. Li, Y. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005). [CrossRef] [PubMed]
  23. S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren,  “Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007). [CrossRef]
  24. N. L. Hoang, J. S. Cho, Y. H. Won, and Y. D. Jeong, “All-optical flip-flop with high on-off contrast ratio using two injection-locked single-mode Fabry-Perot laser diodes,” Opt. Express 15, 5166–5171 (2007). [CrossRef] [PubMed]
  25. R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photonics Technol. Lett. 17, 843–845 (2005). [CrossRef]
  26. K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16, 11405–10 (2008). [CrossRef] [PubMed]
  27. M. Jabbari, M. K. Moravvej-Farshi, R. Ghayour, and A. Zarifkar, “XPM response of multiple quantum well chirped DFB-SOA all-optical flip-flop switching,” World Acad. Sci. Eng. Technol. 56, 696–700 (2009).
  28. A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “All-optical flip-flop operation of VCSOA,” Electron. Lett. 45, 127–128(2009). [CrossRef]
  29. J. Wang, G. Meloni, G. Berrettini, L. Potti, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR-latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 14, 137–141. [CrossRef]
  30. H. L. Minh, Z. Ghassemlooy, and W. P. Ng, “All-optical flip-flop based on symmetric Mach-Zehnder switch with a feedback loop and multiple forward set/reset signals,” Opt. Eng. 46, 040501 (2007). [CrossRef]
  31. A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, “All-optical pseudorandom number generator,” Opt. Commun. 159, 208–214 (1999). [CrossRef]
  32. N. A. Whitaker, Jr., M. C. Gabriel, H. Avramopoulos, and A. Huang, “All-optical, all-fiber circulating shift register with an inverter,” Opt. Lett. 16, 1999–2001 (1991). [CrossRef] [PubMed]
  33. N. C. Johnson, J. A. Harrison, and K. J. Blow, “Demonstration and characterisation of a non-inverting all-optical read/write regenerative memory,” Opt. Commun. 281, 4464–4469 (2008). [CrossRef]
  34. A. M. Kaplan, G. P. Agrawal, and D. N. Maywar, “Optical square-wave clock generation based on an all-optical flip-flop,” IEEE Photonics Technol. Lett. 22, 489–491 (2010). [CrossRef]
  35. T. Houbavlis and K. E. Zoiros, SOA-assisted Sagnac switch and investigation of its roadmap from 10 to 40 GHz,” Opt. Quantum Electron. 35, 1175–1203 (2003). [CrossRef]
  36. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306(1989). [CrossRef]
  37. K. E. Zoiros, G. Papadopoulos, T. Houbavlis, and G. T. Kanellos, “Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac switch,” Opt. Commun. 258, 114–134 (2006). [CrossRef]
  38. K. E. Zoiros, C. Botsiaris, C. S. Koukourlis, and T. Houbavlis, “Necessary temporal condition for optimizing the switching window of the SOA-based ultrafast nonlinear interferometer in counter-propagating configuration,” Opt. Eng. 45, 115005 (2006). [CrossRef]
  39. K. Obermann, S. Kindt, D. Breuer, and K. Petermann, “Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers,” J. Lightwave Technol. 16, 78–85 (1998). [CrossRef]
  40. B. C. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R. J. Runser, I. Glesk, and P. R. Prucnal, “A novel fast optical switch based on two cascaded terahertz optical asymmetric demultiplexers (TOAD),” Opt. Express 10, 15–23 (2002). [PubMed]
  41. M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995). [CrossRef]
  42. Y. K. Huang, I. Glesk, R. Shankar, and P. R. Prucnal, “Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD,” Opt. Express 14, 10339–10344 (2006). [CrossRef] [PubMed]
  43. T. Chattopadhyay, “All-optical symmetric ternary logic gate,” Opt. Laser Technol. 42, 1014–1021 (2010). [CrossRef]
  44. K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36, 1005–1053 (2004). [CrossRef]
  45. L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10–40 GHz,” IEEE J. Quantum Electron. 39, 1394–1408(2003). [CrossRef]
  46. J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34, 1263–1269 (1998). [CrossRef]
  47. L. Wen, P. Zuo, J. Wu, and J. Lin, “Optimizing the perforation of TOAD by changing the wavelength and power of the control pulse,” Chin. Opt. Lett. 1, 503–512 (2003).
  48. H. L. Minh, Z. Ghanemlooy, W. P. Ng, and R. Ngah, “Terahertz optical asymmetric demultiplexer switch with symmetrical switching window,” in Proceedings of the London Communication Symposium (University College London, 2004), pp. 89–92.
  49. K. Uchiyama, T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Signal-to-noise ratio analysis of 100 Gb/s demultiplexing using nonlinear optical loop mirror,” J. Lightwave Technol. 15, 194–201 (1997). [CrossRef]
  50. C. Y. Cheung, Z. Ghassemlooy, G. Swift, and A. Decker, “Crosstalk and noise characteristics of non-linear optical loop mirror demultiplexer and terahertz optical asymmetric demultiplexer,” in Proceedings of the 2nd International Symposium on Communication Systems, Networks and DSP (IEEE, 2000), pp. 59–63.
  51. T. Schneider, Nonlinear Optics in Telecommunications (Springer-Verlag, 2004), Chap. 6, Sect. 6.12.
  52. J. Gowar, Optical Communication System, 2nd ed. (Prentice-Hall, 1993), Chap. 23.
  53. Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical xor using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004). [CrossRef]
  54. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford U. Press, 2007), Chap 7.
  55. N. S. Bergano, F. W. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” IEEE Photonics Technol. Lett. 5, 304–306 (1993). [CrossRef]
  56. F. Matera and M. Settembre, “Role of Q-factor and a time jitter in the performance evaluation of optically amplified transmission systems,” IEEE J. Sel. Top. Quantum Electron. 6, 308–316 (2000). [CrossRef]
  57. G. P. AgrawalApplications of Nonlinear Fiber Optics(Academic, 2001).
  58. H. Wang, J. Wu, and J. Lin, “Performance analysis on terahertz optical asymmetric demultiplexer with assist light injection,” Opt. Commun. 256, 83–97 (2005). [CrossRef]
  59. A. D. Barman, F. Fresi, I. Sengupta, L. Potì, and A. Bogoni, “Theoretical and experimental investigation of inter-channel crosstalk mitigation by assist light in a TOAD de-multiplexer,” in International Conference on Computers and Devices for Communication (CODEC’09) (IEEE, 2009).
  60. F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 784–786 (1998). [CrossRef]
  61. J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol Lett. 14, 12–14 (2002). [CrossRef]
  62. R. Inoharra, K. Nishimura, M. Tsurusawa, and M. Usami, “Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light,” IEEE Photonics Technol. Lett. 15, 1192–1194 (2003). [CrossRef]
  63. Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, Y. Watanabe, Y. Sugimoto, and K. Asakawa, “Sequential operations of quantum dot/ photonic crystal all-optical switch with high repetitive frequency pumping,” J. Lightwave Technol. 27, 1241–1247 (2009). [CrossRef]
  64. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22, 492–494 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited