OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5245–5253

Model of thermally induced wavefront distortion and birefringence in side-pumped Nd-doped YAG and phosphate glass heat capacity rod lasers

Liang Liu, Xiaobo Wang, Shaofeng Guo, Xiaojun Xu, and Qisheng Lu  »View Author Affiliations


Applied Optics, Vol. 49, Issue 28, pp. 5245-5253 (2010)
http://dx.doi.org/10.1364/AO.49.005245


View Full Text Article

Enhanced HTML    Acrobat PDF (1127 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop an analytic model to describe the dynamic average thermal distortion and phase difference between the two principal polarizations in side-pumped Nd:YAG and Nd:glass heat capacity rod lasers. It can be predicted that the average thermal distortion is proportional to the temperature profile on the cross section from the analytic expression and, therefore, it is feasible to measure the temperature profile by wavefront sensing. In addition, temperature-dependent variation of the refractive index constitutes the major contribution of the thermal lensing for Nd:YAG rod lasers. Temperature- and stress-dependent variation of the refractive index constitute the major contributions of the thermal lensing for Nd:glass rod lasers. In the case of the same pumping and cooling conditions, there are the same orders of depolarization loss for Nd-doped YAG, LG-680, LG-750, LG-760, and LG-770 glass rod lasers.

© 2010 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 9, 2010
Revised Manuscript: August 20, 2010
Manuscript Accepted: August 20, 2010
Published: September 22, 2010

Citation
Liang Liu, Xiaobo Wang, Shaofeng Guo, Xiaojun Xu, and Qisheng Lu, "Model of thermally induced wavefront distortion and birefringence in side-pumped Nd-doped YAG and phosphate glass heat capacity rod lasers," Appl. Opt. 49, 5245-5253 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-28-5245


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Koechner, Solid-State Laser Engineering (Springer, 1999).
  2. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9, 2548–2553 (1970). [CrossRef] [PubMed]
  3. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1KW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000). [CrossRef]
  4. H. Injeyan and C. S. Hoefer, “End pumped zig-zag slab laser gain medium,” U.S. patent 6,094,297 (25 July 2000).
  5. S. Palese, J. Harkenrider, W. Long, F. Chui, D. Hoffmaster, W. Burt, H. Injeyan, G. Conway, and F. Tapos, “High brightness, end-pumped, conduction cooled Nd:YAG zig-zag slab laser architecture,” in Advanced Solid State Lasers, C.Marshall, ed., Vol. 50of OSA Trends Optics Photonics (Optical Society of America, 2001), pp. 41–46.
  6. C. T. Walters, J. L. Dulaney, B. E. Campbell, and H. M. Epstein, “Nd-glass burst laser with kW average power output,” IEEE J. Quantum Electron. 31, 293–300 (1995). [CrossRef]
  7. A. C. Erlandson and G. F. Albrecht, “Model predicting the temperature dependence of the gain coefficient and the extractable stored energy density in Nd Phosphate glass lasers,” J. Opt. Soc. Am. B 9, 214–222 (1992). [CrossRef]
  8. A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06μm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41, 7052–7057 (2002). [CrossRef] [PubMed]
  9. W. Xiaobo, X. Xiaojun, and L. Qisheng, “Effect of thermally induced change of stimulated emission cross section in heat capacity lasers,” Chin. J. Lasers 36, 43–46 (2009). [CrossRef]
  10. G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys. 38, 2726–2738 (1967). [CrossRef]
  11. X. Wang, X. Xu, Q. Lu, and E. Xi, “Shack–Hartmann wavefront sensor measurement for dynamic temperature profiles in heat capacity laser rods,” Appl. Opt. 46, 2963–2968(2007). [CrossRef] [PubMed]
  12. W. Xiaobo, X. Xiaojun, and L. Qisheng, “Dynamic temperature profiles in heat capacity laser rods,” High Power Laser Part. Beams 19, 589–592 (2007).
  13. W. Koechner, “Transient thermal profile in optically pumped laser rods,” J. Appl. Phys. 44, 3162–3170 (1973). [CrossRef]
  14. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).
  15. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, 1992).
  16. Q. LÜ, U. Wittrock, and S. Dong, “Photoelastic effects in Nd:YAG rod and slab lasers,” Opt. Laser Technol. 27, 95–101 (1995). [CrossRef]
  17. Phosphate glass: LG-680, LG-750, LG-760, LG-770, http://www.schott.com/advanced_optics.
  18. Nd-doped phosphate glass, http://www.laserglass.com.cn/english-page/index/product/n31.htm.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited