OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5262–5270

Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging

Takeshi Yasui, Yasuhiro Kabetani, Yoshiyuki Ohgi, Shuko Yokoyama, and Tsutomu Araki  »View Author Affiliations


Applied Optics, Vol. 49, Issue 28, pp. 5262-5270 (2010)
http://dx.doi.org/10.1364/AO.49.005262


View Full Text Article

Enhanced HTML    Acrobat PDF (1116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a real-time terahertz (THz) impulse ranging (IPR) system based on a combination of time-of-flight measurement of pulsed THz radiation and the asynchronous-optical-sampling (ASOPS) tech nique. The insensitivity of THz radiation to optical scattering enables the detection of various objects having optically rough surfaces. The temporal magnification capability unique to ASOPS achieves precise distance measurements of a stationary target at an accuracy of 551 μm and a resolution of 113 μm . Furthermore, ASOPS THz IPR is effectively applied to real-time distance measurements of a moving target at a scan rate of 10 Hz . Finally, we demonstrate the application of ASOPS THz IPR to a shape measurement of an optically rough surface and a thickness measurement of a paint film, showing the promise of further expanding the application scope of ASOPS THz IPR. The reported method will become a powerful tool for nondestructive inspection of large-scale structures.

© 2010 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3400) Remote sensing and sensors : Laser range finder
(280.5600) Remote sensing and sensors : Radar
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: June 23, 2010
Revised Manuscript: August 21, 2010
Manuscript Accepted: August 23, 2010
Published: September 22, 2010

Citation
Takeshi Yasui, Yasuhiro Kabetani, Yoshiyuki Ohgi, Shuko Yokoyama, and Tsutomu Araki, "Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging," Appl. Opt. 49, 5262-5270 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-28-5262


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9, 1049–1052 (1998). [CrossRef]
  2. K. Seta, T. Oh’ishi, and S. Seino, “Optical distance measurement using inter-mode beat of laser,” Jpn. J. Appl. Phys. 24, 1374–1375 (1985). [CrossRef]
  3. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29, 1153–1155 (2004). [CrossRef] [PubMed]
  4. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photon. 3, 351–356 (2009). [CrossRef]
  5. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240 m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000). [CrossRef]
  6. S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17, 17324–17337(2009). [CrossRef] [PubMed]
  7. D. L. Maskell and G. S. Woods, “A frequency modulated envelope delay FSCW radar for multiple-target applications,” IEEE Trans. Instrum. Meas. 49, 710–715 (2000). [CrossRef]
  8. M. Mitsumoto, N. Uehara, S. Inatsune, and T. Kirimoto, “Target distance and velocity measurement algorithm to reduce false target in FMCW automotive radar,” IEICE Trans. Commun. E83-B, 1983–1989 (2000).
  9. G. A. Ybarra, S. H. Ardalan, C. P. Hearn, R. E. Marshall, and R. T. Neece, “Detection of target distance in the presence of an interfering reflection using a frequency-stepped double side-band suppressed carrier microwave radar system,” IEEE Trans. Microwave Theory Tech. 39, 809–818 (1991). [CrossRef]
  10. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007). [CrossRef]
  11. R. A. Cheville and D. Grischkowsky, “Time domain THz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962(1995). [CrossRef]
  12. J. Xu and X.-C. Zhang, “Circular involute stage,” Opt. Lett. 29, 2082–2084 (2004). [CrossRef] [PubMed]
  13. J. Kim, S.-G. Jeon, J.-I. Kim, and Y.-S. Jin, “Terahertz pulse detection using rotary optical delay line,” Jpn. J. Appl. Phys. 46, 7332–7335 (2007). [CrossRef]
  14. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, “A pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Opt. 26, 4303–4309 (1987). [CrossRef] [PubMed]
  15. Y. Takagi and S. Adachi, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers,” Rev. Sci. Instrum. 70, 2218–2224 (1999). [CrossRef]
  16. T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 061101 (2005). [CrossRef]
  17. A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express 14, 430–437 (2006). [CrossRef] [PubMed]
  18. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007). [CrossRef] [PubMed]
  19. T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35, 1689–1691 (2010). [CrossRef] [PubMed]
  20. R. F. Anastasi and E. I. Madaras, “Terahertz NDE for metallic surface roughness evaluation,” in Proceedings of 4th International Workshop on Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, C.H.Chen, ed. (NDT.net, 2006), pp. 57–62.
  21. M. Naftaly and R. Dudley, “Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers,” Opt. Lett. 34, 1213–1215 (2009). [CrossRef] [PubMed]
  22. H. J. Liebe, “Atmospheric water vapor: a nemesis for millimeter wave propagation,” in Atmospheric Water Vapor, A.Deepak, Th.D.Wilkerson, and L.H.Ruhnke, eds. (Academic, 1980), pp. 143–201.
  23. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997). [CrossRef] [PubMed]
  24. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “A terahertz paintmeter for non-contact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44, 6849–6856 (2005). [CrossRef] [PubMed]
  25. T. Yasuda, T. Iwata, T. Araki, and T. Yasui, “Improvement of minimum paint film thickness for THz paintmeters by multiple regression analysis,” Appl. Opt. 46, 7518–7526 (2007). [CrossRef] [PubMed]
  26. T. Yasuda, T. Yasui, T. Araki, and E. Abraham, “Real-time two-dimensional terahertz tomography of moving objects,” Opt. Commun. 267, 128–136 (2006). [CrossRef]
  27. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express 16, 9565–9570 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3167 KB)     
» Media 2: MOV (2444 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited