OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5284–5296

Interpretation of single-particle negative polarization at intermediate scattering angles

Jani Tyynelä, Evgenij Zubko, Karri Muinonen, and Gorden Videen  »View Author Affiliations


Applied Optics, Vol. 49, Issue 28, pp. 5284-5296 (2010)
http://dx.doi.org/10.1364/AO.49.005284


View Full Text Article

Enhanced HTML    Acrobat PDF (1532 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the interrelation of the internal field of irregular particles to the far-field scattering characteristics by modifying the internal field of dipole groups. In this paper, we concentrate on the longitudinal component, i.e., the internal-field component parallel to the incident wave vector. We use the discrete-dipole approximation to determine the internal field and switch off the longitudinal component from the dipoles that have the highest energy density above a preset cutoff value. We conclude that only a relatively small number of core dipoles, about 5% of all dipoles, contribute to the negative linear polarization at intermediate scattering angles. These core dipole groups are located at the forward part of the particles. The number of core dipoles in the group becomes greater as particle asphericity increases. We find that the interference between the scattered waves from the core dipole groups, which was studied previously for spherical particles, is preserved to a large extent for nonspherical particles.

© 2010 Optical Society of America

OCIS Codes
(260.3160) Physical optics : Interference
(290.5855) Scattering : Scattering, polarization

ToC Category:
Physical Optics

History
Original Manuscript: April 26, 2010
Revised Manuscript: August 23, 2010
Manuscript Accepted: August 23, 2010
Published: September 23, 2010

Citation
Jani Tyynelä, Evgenij Zubko, Karri Muinonen, and Gorden Videen, "Interpretation of single-particle negative polarization at intermediate scattering angles," Appl. Opt. 49, 5284-5296 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-28-5284


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Yanamandra-Fisher and M. S. Hanner, “Optical properties of nonspherical particles of size comparable to the wavelength of light: application to comet dust,” Icarus 138, 107–128 (1999). [CrossRef]
  2. E. V. Petrova, K. Jockers, and N. N. Kiselev, “Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust,” Icarus 148, 526–536 (2000). [CrossRef]
  3. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  4. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  5. H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).
  6. E. Zubko, Yu. G. Shkuratov, G. Videen, and N. Kiselev, “DDA simulations of light scattering by small irregular particles with various structure,” J. Quant. Spectrosc. Radiat. Transfer 101, 416–434 (2006). [CrossRef]
  7. E. Zubko, Yu. G. Shkuratov, K. Muinonen, and G. Videen, “Collective effects by agglomerated debris particles in the backscatter,” J. Quant. Spectrosc. Radiat. Transfer 100, 489–495(2006). [CrossRef]
  8. O. Muñoz, H. Volten, J. F. de Haan, W. Vassen, and J. Hovenier, “Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633nm,” J. Geophys. Res. 106, 22833–22844 (2001). [CrossRef]
  9. H. Volten, O. Muñoz, J. F. de Haan, W. Vassen, J. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6nm and 632.8nm,” J. Geophys. Res. 106, 17375–17401 (2001). [CrossRef]
  10. O. Muñoz, H. Volten, J. W. Hovenier, M. Min, Yu. G. Shkuratov, J. P. Jalava, W. J. van der Zande, and L. B. F. M. Waters, “Experimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile,” Astron. Astrophys. 446, 525–535(2006). [CrossRef]
  11. K. F. Ren, “Symmetry relations in generalized Lorentz–Mie theory,” J. Opt. Soc. Am. A 11, 1812–1817 (1994). [CrossRef]
  12. J. F. Owen, R. K. Chang, and P. W. Barber, “Internal electric field distributions of a dielectric cylinder at resonance wavelengths,” Opt. Lett. 6, 540–542 (1981). [CrossRef] [PubMed]
  13. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26, 1348–1356 (1987). [CrossRef] [PubMed]
  14. J. P. Barton, “Electromagnetic field calculations for an irregularly shaped, near-spheroidal particle with arbitrary illumination,” J. Opt. Soc. Am. 19, 2429–2435 (2002). [CrossRef]
  15. L. G. Astafyeva and V. A. Babenko, “Interaction of electromagnetic radiation with silicate spheroidal aerosol particles,” J. Quant. Spectrosc. Radiat. Transfer 88, 9–15 (2004). [CrossRef]
  16. C. Li, G. W. Kattawar, and P.-W. Zhai, “Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave,” Opt. Express 13, 4554–4559 (2005). [CrossRef] [PubMed]
  17. J. Tyynelä, E. Zubko, G. Videen, and K. Muinonen, “Interrelating angular scattering characteristics to internal electric fields for wavelength-scale spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 520–534 (2007). [CrossRef]
  18. H. J. Visser, Array and Phased Array Antenna Basics(Wiley, 2005). [CrossRef]
  19. K. Muinonen, E. Zubko, J. Tyynelä, Yu. G. Shkuratov, and G. Videen, “Light scattering by Gaussian random particles with discrete-dipole approximation,” J. Quant. Spectrosc. Radiat. Transfer 106, 360–377 (2007). [CrossRef]
  20. M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “A reflection symmetry of a sphere’s internal field and its consequences on scattering: a microphysical approach,” J. Opt. Soc. Am. A 25, 98–107 (2008). [CrossRef]
  21. M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “Explanation of the patterns in Mie theory,” J. Quant. Spectrosc. Radiat. Transfer 111, 782–794 (2010). [CrossRef]
  22. J. Tyynelä, K. Muinonen, E. Zubko, and G. Videen, “Interrelating angular scattering characteristics to internal electric fields for Gaussian-random-sphere particles,” J. Quant. Spectrosc. Radiat. Transfer 109, 2207–2218 (2008). [CrossRef]
  23. E. Zubko, Yu. G. Shkuratov, M. Hart, J. Eversole, and G. Videen, “Backscattering and negative polarization of agglomerate particles,” Opt. Lett. 28, 1504–1506 (2003). [CrossRef] [PubMed]
  24. K. Muinonen, “Light scattering by stochastically shaped particles,” in Proceedings of the 1989 URSI International Symposium on Electromagnetic Theory (1989), pp. 428–430.
  25. E. Zubko, H. Kimura, Yu. G. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1741–1749 (2009). [CrossRef]
  26. E. Zubko, D. Petrov, Yu. G. Shkuratov, and G. Videen, “Discrete dipole approximation simulations of scattering by particles with hierarchical structure,” Appl. Opt. 44, 6479–6485 (2005). [CrossRef] [PubMed]
  27. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007). [CrossRef]
  28. B. T. Draine, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693–2703(2008). [CrossRef]
  29. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. theoretical analysis,” J. Opt. Soc. Am. A 23, 2578–2591 (2006). [CrossRef]
  30. E. Zubko, D. Petrov, Y. Grynko, Yu. G. Shkuratov, H. Okamoto, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt. 49, 1267–1279 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited