OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5302–5308

Off-axis cavity enhanced spectroscopy based on a pulsed quantum cascade laser for sensitive detection of ammonia and ethylene

Jagadeeshwari Manne, Alan Lim, Wolfgang Jäger, and John Tulip  »View Author Affiliations


Applied Optics, Vol. 49, Issue 28, pp. 5302-5308 (2010)
http://dx.doi.org/10.1364/AO.49.005302


View Full Text Article

Enhanced HTML    Acrobat PDF (756 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A pulsed, distributed feedback (DFB) quantum cascade (QC) laser centered at 970 cm 1 was used in combination with an off-axis cavity enhanced absorption (CEA) spectroscopic technique for the detection of ammonia and ethylene. Here, the laser is coupled into a high-finesse cavity with an optical path length of 76 m . The cavity is installed into a 53 cm long sample cell with a volume of 0.12 L . The laser is excited with short current pulses ( 5 10 ns ), and the pulse amplitude is modulated with an external current ramp, resulting in a 0.3 cm 1 frequency scan. A demodulation approach followed by numerical filtering was utilized to improve the signal-to-noise ratio. We demonstrated detection limits of ~15 ppb and 20 ppb for ammonia and ethylene, respectively, with less than 5 s averaging time.

© 2010 Optical Society of America

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 15, 2010
Revised Manuscript: August 24, 2010
Manuscript Accepted: August 27, 2010
Published: September 24, 2010

Citation
Jagadeeshwari Manne, Alan Lim, Wolfgang Jäger, and John Tulip, "Off-axis cavity enhanced spectroscopy based on a pulsed quantum cascade laser for sensitive detection of ammonia and ethylene," Appl. Opt. 49, 5302-5308 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-28-5302


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist and F. Capasso, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef] [PubMed]
  2. Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, M. G. Allen, and F. K. Tittel, “Off-axis integrated cavity output spectroscopy for nitric oxide detection in human breath using a quantum cascade laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper MNN6.
  3. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004). [CrossRef] [PubMed]
  4. G. Duxbury, E. L. Normand, N. Langford, M. T. McCulloch, and S. Walker, “Highly sensitive detection of trace gases using pulsed quantum cascade lasers,” Proc. SPIE 4817, 14–21(2002). [CrossRef]
  5. M. Hensley, W. T. Rawlins, D. B. Oakes, D. M. Sonnenfroh, and M. G. Allen, “A quantum cascade laser sensor for SO2 and SO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2005), paper CTuY4. [PubMed]
  6. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser,” Opt. Lett. 24, 1762–1764 (1999). [CrossRef]
  7. A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002). [CrossRef] [PubMed]
  8. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001). [CrossRef]
  9. A. Kosterev, F. K. Tittel, S. Wehe, D. M. Sonnenfroh, M. G. Allen, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivo, and A. Y. Cho, “Spectroscopic trace gas detection with pulsed quantum cascade lasers,” in Laser Applications to Chemical and Environmental Analysis, A.Sawchuk, ed., Vol. 69 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper SaB5.
  10. M. McCulloch, E. Normand, G. Duxbury, and N. Langford, “Real time detection of automobile exhaust gases by use of a chirped pulse spectrometer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CTuR5.
  11. J. B. McManus, D.D.Nelson, Jr., J. H. Shorter, M. S. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open- and closed-path measurement of trace gases,” Proc. SPIE 4817, 22–33 (2002). [CrossRef]
  12. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998). [CrossRef]
  13. D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A, Mol. Spectrosc. 60, 3325–3335 (2004). [CrossRef]
  14. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005). [CrossRef]
  15. O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jager, “Cavity ringdown spectroscopy with a pulsed distributed feedback quantum cascade laser,” Proc. SPIE 6127, 61270A(2006). [CrossRef]
  16. J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ringdown spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230–9237(2006). [CrossRef] [PubMed]
  17. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, and M. G. Allen, “Cavity-enhanced spectroscopy using room-temperature quantum cascade lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CMN4. [PubMed]
  18. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998). [CrossRef]
  19. A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293, 331–336 (1998). [CrossRef]
  20. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863(2001).
  21. L. R. Narasimhan, W. Goodman, and C. K. N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during haemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98, 4617–4621 (2001). [CrossRef] [PubMed]
  22. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005). [CrossRef]
  23. M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ringdown and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem., Sect. C. Phys. Chem. 101, 100–142 (2005). [CrossRef]
  24. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002). [CrossRef]
  25. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Harcourt, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited