OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5309–5320

Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue

Quanzeng Wang, Karthik Shastri, and T. Joshua Pfefer  »View Author Affiliations

Applied Optics, Vol. 49, Issue 28, pp. 5309-5320 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1086 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Improvements in measurement of epithelial tissue optical properties (OPs) in the ultraviolet and visible (UV–Vis) may lead to enhanced understanding of optical techniques for neoplasia detection. In this study, we investigated an approach based on fiber-optic measurement of reflectance to determine absorption and reduced scattering coefficients ( μ a and μ s ) in two-layer turbid media. Neural network inverse models were trained on simulation data for a wide variety of OP combinations ( μ a = 1 22.5 , μ s = 5 42.5 cm 1 ). Experimental measurements of phantoms with top-layer thicknesses (D) ranging from 0.22 to 0.66 mm were performed at three UV–Vis wavelengths. OP estimation accuracy was calculated and compared to theoretical results. Mean prediction errors were strongly correlated with D and ranged widely, from 1.5 to 12.1 cm 1 . Theoretical analyses indicated the potential for improving accuracy with alternate probe geometries. Although numerous challenges remain, this initial experimental study of an unconstrained approach for fiber-optic-based OP determination in two-layer epithelial tissue indicates the potential to provide useful measurements.

© 2010 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.1030) Spectroscopy : Absorption
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 14, 2010
Revised Manuscript: August 17, 2010
Manuscript Accepted: August 22, 2010
Published: September 24, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Quanzeng Wang, Karthik Shastri, and T. Joshua Pfefer, "Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue," Appl. Opt. 49, 5309-5320 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer Statistics, 2009,” CA Cancer J. Clin. 59, 225–249 (2009). [CrossRef] [PubMed]
  2. J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol. 107, S248–S255 (2007). [CrossRef] [PubMed]
  3. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001). [CrossRef] [PubMed]
  4. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999). [CrossRef]
  5. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10, 034018 (2005). [CrossRef] [PubMed]
  6. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206–215 (2003). [CrossRef] [PubMed]
  7. M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001). [CrossRef]
  8. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation,” Lasers Surg. Med. 18, 129–138 (1996). [CrossRef] [PubMed]
  9. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44, 4291–4305 (2005). [CrossRef] [PubMed]
  10. T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998). [CrossRef]
  11. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, and H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996). [CrossRef] [PubMed]
  12. G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, “Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model,” Appl. Opt. 40, 3810–3821 (2001). [CrossRef]
  13. R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002). [CrossRef] [PubMed]
  14. T. H. Pham, T. Spott, L. O. Svaasand, and B. J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt. 39, 4733–4745 (2000). [CrossRef]
  15. Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt. 45, 4776–4790 (2006). [CrossRef] [PubMed]
  16. Y. S. Fawzi, A. B. M. Youssef, M. H. El-Batanony, and Y. M. Kadah, “Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths,” Appl. Opt. 42, 6398–6411 (2003). [CrossRef] [PubMed]
  17. Y. Chen, L. Lin, G. Li, J. Gao, and Q. Yu, “Hierarchical PCA-NN for retrieving the optical properties of two-layer tissue model,” in Advances in Neural Networks (Springer, 2004), pp. 786–791.
  18. A. D. Kim, C. Hayakawa, and V. Venugopalan, “Estimating optical properties in layered tissues by use of the Born approximation of the radiative transport equation,” Opt. Lett. 31, 1088–1090 (2006). [CrossRef] [PubMed]
  19. K. Y. Yong, S. P. Morgan, I. M. Stockford, and M. C. Pitter, “Characterization of layered scattering media using polarized light measurements and neural networks,” J. Biomed. Opt. 8, 504–511 (2003). [CrossRef] [PubMed]
  20. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105, 102028 (2009). [CrossRef]
  21. Q. Z. Wang, H. Z. Yang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: development and implementation of a fiberoptic-based system,” Opt. Express 16, 8685–8703 (2008). [CrossRef] [PubMed]
  22. Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A 24, 1011–1025 (2007). [CrossRef]
  23. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45, 1062–1071 (2006). [CrossRef] [PubMed]
  24. Q. Wang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Condensed Monte Carlo modeling of reflectance from biological tissue with a single illumination-detection fiber,” IEEE J. Sel. Top. Quantum Electron. 16, 627–634 (2010). [CrossRef]
  25. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004). [CrossRef] [PubMed]
  26. D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006). [CrossRef] [PubMed]
  27. T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical-properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992). [CrossRef] [PubMed]
  28. Q. Liu, C. F. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236(2003). [CrossRef] [PubMed]
  29. S. A. Prahl, M. J. C. Vangemert, and A. J. Welch, “determining the optical-properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993). [CrossRef] [PubMed]
  30. I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt. 12, 014030 (2007). [CrossRef] [PubMed]
  31. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998). [CrossRef]
  32. T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, “Determination of epithelial tissue scattering coefficient using confocal microscopy,” IEEE J. Sel. Top. Quantum Electron. 9, 307–313 (2003). [CrossRef]
  33. A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol. 67, 27–33 (1997). [CrossRef] [PubMed]
  34. H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11, 2413–2419(2005). [PubMed]
  35. T. P. Moffitt and S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001). [CrossRef]
  36. P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9, 314–321 (2003). [CrossRef]
  37. A. Amelink and H. J. C. M. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43, 3048–3054(2004). [CrossRef] [PubMed]
  38. J. W. Tunnell, A. E. Desjardins, L. Galindo, I. Georgakoudi, S. A. McGee, J. Mirkovic, M. G. Mueller, J. Nazemi, F. T. Nguyen, A. Wax, Q. G. Zhang, R. R. Dasari, and M. S. Feld, “Instrumentation for multi-modal spectroscopic diagnosis of epithelial dysplasia,” Technol. Cancer Res. Treatment 2, 505–514 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited