OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5366–5373

Radiometric and signal-to-noise ratio properties of multiplex dispersive spectrometry

Alessandro Barducci, Donatella Guzzi, Cinzia Lastri, Vanni Nardino, Paolo Marcoionni, and Ivan Pippi  »View Author Affiliations


Applied Optics, Vol. 49, Issue 28, pp. 5366-5373 (2010)
http://dx.doi.org/10.1364/AO.49.005366


View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent theoretical investigations have shown important radiometric disadvantages of interferential multiplexing in Fourier transform spectrometry that apparently can be applied even to coded aperture spectrometers. We have reexamined the methods of noninterferential multiplexing in order to assess their signal-to-noise ratio (SNR) performance, relying on a theoretical modeling of the multiplexed signals. We are able to show that quite similar SNR and radiometric disadvantages affect multiplex dispersive spectrometry. The effect of noise on spectral estimations is discussed.

© 2010 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(170.1630) Medical optics and biotechnology : Coded aperture imaging
(300.0300) Spectroscopy : Spectroscopy
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:
Spectroscopy

History
Original Manuscript: June 1, 2010
Manuscript Accepted: August 12, 2010
Published: September 24, 2010

Citation
Alessandro Barducci, Donatella Guzzi, Cinzia Lastri, Vanni Nardino, Paolo Marcoionni, and Ivan Pippi, "Radiometric and signal-to-noise ratio properties of multiplex dispersive spectrometry," Appl. Opt. 49, 5366-5373 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-28-5366


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. B. Fellgett, “The multiplex advantage,” Ph.D. dissertation (University of Cambridge, 1951).
  2. M. J. E. Golay, “Multislit spectrometry,” J. Opt. Soc. Am. 39, 437–444 (1949). [CrossRef] [PubMed]
  3. M. E. Gehm, S. T. McCain, N. P. Pitsianis, D. J. Brady, P. Potuluri, and M. E. Sullivan, “Static two-dimensional aperture coding for multimodal, multiplex spectroscopy,” Appl. Opt. 45, 2965–2973 (2006). [CrossRef] [PubMed]
  4. J. A. Decker, Jr., “Hadamard transform spectroscopy,” in Spectrometric Techniques, G.A.Vanasse ed. (Academic, 1977).
  5. J. R. Kimmel, O. K. Yoon, I. A. Zuleta, O. Trapp, and R. N. Zare, “Peak height precision in Hadamard transform time-of-flight mass spectra,” J. Am. Soc. Mass Spectrom. 16, 1117–1130 (2005). [CrossRef]
  6. R. A. DeVerse, R. M. Hammaker, and W. G. Fateley, “Hadamard transform Raman imagery with a digital micro-mirror array,” Vib. Spectrosc. 19, 177–186 (1999). [CrossRef]
  7. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier transform spectrometry and common path triangular interferometers,” Opt. Express 18, 11622–11649 (2010). [CrossRef] [PubMed]
  8. S. T. McCain, M. E. Gehm, Y. Wang, N. P. Pitsianis, and D. J. Brady, “Coded aperture Raman spectroscopy for quantitative measurements of ethanol in a tissue phantom,” Appl. Spectrosc. 60, 663–671 (2006). [CrossRef] [PubMed]
  9. C. Fernandez, B. D. Guenther, M. E. Gehm, D. J. Brady, and M. E. Sullivan, “Longwave infrared (LWIR) coded aperture dispersive spectrometer,” Opt. Express 15, 5742–5753 (2007). [CrossRef] [PubMed]
  10. N. J. A. Sloane, T. Fine, P. G. Phillips, and M. Harwit, “Codes for multiplex spectrometry,” Appl. Opt. 8, 2103–2106 (1969). [CrossRef] [PubMed]
  11. M. Harwit, P. G. Phillips, T. Fine, and N. J. Sloane, “Doubly multiplexed dispersive spectrometers,” Appl. Opt. 9, 1149–1154 (1970). [CrossRef] [PubMed]
  12. R. Damaschini, “Binary-encoding image based on original Hadamard matrices,” Opt. Commun. 90, 218–220 (1992). [CrossRef]
  13. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill1991).
  14. P. B. Fellgett, “Conclusions on multiplex methods,” J. Phys. (Paris) Colloq. 28, 165–171 (1967). [CrossRef]
  15. P. B. Fellgett, “A propos de la théorie du spectromètre interférentiel multiplex,” J. Phys. Radium 19, 187–191 (1958). [CrossRef]
  16. P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60, 91–93 (2006). [CrossRef]
  17. L. Streeter, G. R. Burling-Claridge, M. J. Cree, and R. Künnemeyer, “Optical full Hadamard matrix multiplexing and noise effects,” Appl. Opt. 48, 2078–2085 (2009). [CrossRef] [PubMed]
  18. D. J. Brady, “Multiplex sensors and the constant radiance theorem,” Opt. Lett. 27, 16–18 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited