OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5378–5383

Optical properties of indium phosphide in the 50 200 Å wavelength region using a reflectivity technique

P. N. Rao, Mohammed H. Modi, and G. S. Lodha  »View Author Affiliations


Applied Optics, Vol. 49, Issue 28, pp. 5378-5383 (2010)
http://dx.doi.org/10.1364/AO.49.005378


View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical constants of indium phosphide (InP) in the soft x-ray region of 50 200 Å are determined from angle-dependent reflectivity measurements. The measurements are carried out using the reflectivity beam line at the Indus-1 synchrotron source. The derived optical constants are compared with tabulated values of Henke et al. [ At. Data Nucl. Data Tables 54, 181 (1993)]. Experimental values of δ and β are in close agreement with the tabulated values in the lower wavelength region of 50 120 Å . The experimental value indicates an edge shift of 0.4 Å toward the lower wavelength side from the phosphorous L-edge value of 92 Å . However, above the 120 Å region, where the indium N 2 edge falls at 160.7 Å , there is a huge difference between experimental and tabulated values. Both delta and beta values are significantly higher. In contrast to tabulated values of the β / δ ratio, which is more than 1 above the 140 Å region, the experimental measured ratio is found to be less than 1. This study presents the first reported experimental values of optical constants for InP in this wavelength range, to the best of our knowledge.

© 2010 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(310.6845) Thin films : Thin film devices and applications
(250.0040) Optoelectronics : Detectors

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 17, 2010
Revised Manuscript: August 20, 2010
Manuscript Accepted: August 20, 2010
Published: September 24, 2010

Citation
P. N. Rao, Mohammed H. Modi, and G. S. Lodha, "Optical properties of indium phosphide in the 50–200Å wavelength region using a reflectivity technique," Appl. Opt. 49, 5378-5383 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-28-5378


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Spiller, Soft X-Ray Optics (SPIE, 1994). [CrossRef]
  2. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). [CrossRef]
  3. B. L. Henke, P. Lee, J. Tanaka, R. Shimabukuro, and B. Fujikawa, “Low energy x-ray diagnostics,” At. Data Nucl. Data Tables 27 (1982). [CrossRef]
  4. F. Riesz, L. Ryc, J. Badziak, and M. Pfeifer, “Pulse response of GaAs and InP photoconductive detectors for the x-ray diagnostics of laser plasmas,” Nucl. Instrum. Methods Phys. Res. A 474, 151–158 (2001). [CrossRef]
  5. R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Curr. Sci. 82, 298–304 (2002).
  6. D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation Principles and Applications (Cambridge U. Press, 1999), Chap. 3, pp. 55–97.
  7. E. M. Gullikson, P. Denham, S. Mrowka, and J. H. Underwood, “Absolute photoabsorption measurements of Mg, Al, and Si in the soft-x-ray region below the L2,3 edges,” Phys. Rev. B 49, 16283–16288 (1994). [CrossRef]
  8. L. Nevot and P. Croce, “Characterization of surfaces by grazing incidence x-ray reflection. Application to the polishing study of several silicate glasses,” Rev. Phys. Appl. 15, 761–779 (1980). [CrossRef]
  9. R. Soufli and E. M. Gullikson, “Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultraviolet-soft-x-ray region,” Appl. Opt. 36, 5499–5507 (1997). [CrossRef] [PubMed]
  10. L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954). [CrossRef]
  11. G. S. Lodha, K. Yamashita, H. Kunieda, Y. Tawara, J. Yu, Y. Namba, and J. M. Bennett, “Effect of surface roughness and subsurface damage on grazing-incidence x-ray scattering and specular reflectance,” Appl. Opt. 37, 5239–5252(1998). [CrossRef]
  12. M. H. Modi, G. S. Lodha, M. K. Tiwari, S. K. Rai, C. Mukharjee, P. Magudapathy, K. G. M. Nair, and R. V. Nandedkar, “Ion irradiation damage on tin side surface of float glass,” Nucl. Instrum. Methods Phys. Res. B 239, 383–390 (2005). [CrossRef]
  13. D. Ksenzov, T. Panzer, C. Schlenper, C. Morawe, and U. Pietsch, “Optical properties of boron carbide near the boron K edge evaluated by soft x-ray reflectometry from a Ru/B4C multilayer,” Appl. Opt. 48, 6684–6690 (2009). [CrossRef] [PubMed]
  14. P. Tripathi, G. S. Lodha, M. H. Modi, A. K. Sinha, K. J. S. Sawhney, and R. V. Nandedkar, “Optical constants of silicon and silicon dioxide using soft x-ray reflectance measurements,” Opt. Commun. 211, 215–223 (2002). [CrossRef]
  15. G. S. Lodha, M. Nayak, M. H. Modi, A. K. Sinha, and R. V. Nandedkar, “Study of optical response near the absorption edge using vacuum ultraviolet/soft x-ray reflectivity beamline on Indus-1,” J. Phys. Conf. Ser. 80, 012031 (2007). [CrossRef]
  16. E. Filatova, V. Lukyanov, C. Blessing, and J. Friedrich, “Reflection spectra and optical constants of noncrystalline SiO2 in the soft x-ray region,” J. Electron Spectrosc. Relat. Phenom. 79, 63–66 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited