OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5391–5398

Measuring small absorptions by exploiting photothermal self-phase modulation

Nico Lastzka, Jessica Steinlechner, Sebastian Steinlechner, and Roman Schnabel  »View Author Affiliations


Applied Optics, Vol. 49, Issue 28, pp. 5391-5398 (2010)
http://dx.doi.org/10.1364/AO.49.005391


View Full Text Article

Enhanced HTML    Acrobat PDF (641 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for the measurement of small optical absorption coefficients. The method exploits the deformation of cavity Airy peaks that occur if the cavity contains an absorbing material with a nonzero thermorefractive coefficient d n / d T or a nonzero expansion coefficient a th . Light absorption leads to a local temperature change and to an intensity-dependent phase shift, i.e., to a photothermal self-phase modulation. The absorption coefficient is derived from a comparison of time-resolved measurements with a numerical time-domain simulation applying a Markov-chain Monte Carlo algorithm. We apply our method to the absorption coefficient of lithium niobate doped with 7 mol . % magnesium oxide and derive a value of α LN = ( 5.9 ± 0.9 ) × 10 4 / cm . Our method should also apply to materials with much lower absorption coefficients. Based on our modeling, we estimate that, with cavity finesse values of the order of 10 4 , absorption coefficients of as low as 10 8 / cm can be measured.

© 2010 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(120.6810) Instrumentation, measurement, and metrology : Thermal effects

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 25, 2010
Manuscript Accepted: August 9, 2010
Published: September 27, 2010

Citation
Nico Lastzka, Jessica Steinlechner, Sebastian Steinlechner, and Roman Schnabel, "Measuring small absorptions by exploiting photothermal self-phase modulation," Appl. Opt. 49, 5391-5398 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-28-5391


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991). [CrossRef] [PubMed]
  2. V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264, 1–10 (1999). [CrossRef]
  3. K. Arai, R. Takahashi, D. Tatsumi, K. Izumi, Y. Wakabayashi, H. Ishizaki, M. Fukushima, T. Yamazaki, M.-K. Fujimoto, A. Takamori, K. Tsubono, R. DeSalvo, A. Bertolini, S. Márka, V. Sannibale, the TAMA Collaboration, T. Uchiyama, O. Miyakawa, S. Miyoki, K. Agatsuma, T. Saito, M. Ohashi, K. Kuroda, I. Nakatani, S. Telada, K. Yamamoto, T. Tomaru, T. Suzuki, T. Haruyama, N. Sato, A. Yamamoto, T. Shintomi, the CLIO Collaboration, and the LCGT Collaboration, “Status of Japanese gravitational wave detectors,” Class. Quantum Grav. 26, 204020 (2009). [CrossRef]
  4. M. Punturo, M. Abernathy, F. Acernese, B. Allen, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, M. Beker, N. Beveridge, S. Birindelli, S. Bose, L. Bosi, S. Braccini, C. Bradaschia, T. Bulik, , G. Cella, E. Chassande Mottin, S. Chelkowski, A. Chincarini, J. Clark, E. Coccia, C. Colacino, J. Colas, A. Cumming, L. Cunningham, E. Cuoco, S. Danilishin, K. Danzmann, G. De Luca, R. De Salvo, T. Dent, R. Derosa, L. Di Fiore, A. Di Virgilio, M. Doets, V. Fafone, P. Falferi, R. Flaminio, J. Franc, F. Frasconi, A. Freise, P. Fulda, J. Gair, G. Gemme, A. Gennai, A. Giazotto, K. Glampedakis, M. Granata, H. Grote, G. Guidi, G. Hammond, M. Hannam, J. Harms, D. Heinert, M. Hendry, I. Heng, E. Hennes, S. Hild, J. Hough, S. Husa, S. Huttner, G. Jones, F. Khalili, K. Kokeyama, K. Kokkotas, B. Krishnan, M. Lorenzini, H. Lück, E. Majorana, I. Mandel, V. Mandic, I. Martin, C. Michel, Y. Minenkov, N. Morgado, S. Mosca, B. Mours, H. Müller-Ebhardt, P. Murray, R. Nawrodt, J. Nelson, R. Oshaughnessy, C. DOtt, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti, D. Passuello, L. Pinard, R. Poggiani, P. Popolizio, M. Prato, P. Puppo, D. Rabeling, P. Rapagnani, J. Read, T. Regimbau, H. Rehbein, S. Reid, L. Rezzolla, F. Ricci, F. Richard, A. Rocchi, S. Rowan, A. Rüdiger, B. Sassolas, B. Sathyaprakash, R. Schnabel, C. Schwarz, P. Seidel, A. Sintes, K. Somiya, F. Speirits, K. Strain, S. Strigin, P. Sutton, S. Tarabrin, J. van den Brand, C. van Leewen, M. van Veggel, C. van den Broeck, A. Vecchio, J. Veitch, F. Vetrano, A. Vicere, S. Vyatchanin, B. Willke, G. Woan, P. Wolfango, and K. Yamamoto, “The third generation of gravitational wave observatories and their science reach,” Class. Quantum Grav. 27, 084007 (2010). [CrossRef]
  5. http://www.et-gw.eu
  6. U. Willamowski, T. Gross, D. Ristau, and H. Welling, “Calorimetric measurement of optical absorption at 532nm and 1064nm according to ISO/FDIS 11551,” Proc. SPIE 2870, 483–494 (1996). [CrossRef]
  7. V. Loriette and C. Boccara, “Absorption of low-loss optical materials measured at 1064nm by a position-modulated collinear photothermal detection technique,” Appl. Opt. 42, 649–656 (2003). [CrossRef] [PubMed]
  8. S. Hild, H. Lück, W. Winkler, K. Strain, H. Grote, J. Smith, M. Malec, M. Hewitson, B. Willke, J. Hough, and K. Danzmann, “Measurement of a low-absorption sample of OH-reduced fused silica,” Appl. Opt. 45, 7269–7272 (2006). [CrossRef] [PubMed]
  9. P. Hello and J. Vinet, “Analytical models of thermal aberrations in massive mirrors heated by high power laser beams,” J. Phys. (France) 51, 1267–1282 (1990). [CrossRef]
  10. P. Hello and J. Vinet, “Numerical model of transient thermal effects in high power optical resonators,” J. Phys. (France) 3, 717–732 (1993). [CrossRef]
  11. L. Matone, M. Barsuglia, F. Bondu, F. Cavalier, H. Heitmann, and N. Man, “Finesse and mirror speed measurement for a suspended Fabry Perot cavity using the ringing effect,” Phys. Lett. A 271, 314–318 (2000). [CrossRef]
  12. S. Chelkowski, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Coherent control of broadband vacuum squeezing,” Phys. Rev. A 75, 043814 (2007). [CrossRef]
  13. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10dB quantum-noise reduction,” Phys. Rev. Lett. 100, 033602 (2008). [CrossRef] [PubMed]
  14. H. Vahlbruch, “Squeezed light for gravitational wave astronomy,” Ph.D. dissertation (University of Hannover, 2008).
  15. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997). [CrossRef]
  16. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006). [CrossRef]
  17. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138(1990). [CrossRef]
  18. M. J. Weber, Handbook of Optical Materials (CRC, 2003).
  19. R.Hull, ed., Properties of Crystalline Silicon (INSPEC, 1999).
  20. I. W. Kim, B. C. Park, B. M. Jin, A. S. Bhalla, and J. W. Kim, “Characteristics of MgO-doped LiNbO3 crystals,” Mater. Lett. 24, 157–160 (1995). [CrossRef]
  21. K.K.Wong, ed., Properties of Lithium Niobate (INSPEC, 2002).
  22. C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964). [CrossRef]
  23. P. Gregory, Bayesian Logical Data Analysis for the Physical Sciences (Cambridge U. Press, 2005). [CrossRef]
  24. M. Green and M. Keevers, “Optical properties of intrinsic silicon at 300K,” Prog. Photovolt. Res. Appl. 3, 189–192 (1995). [CrossRef]
  25. M. Keevers and M. Green, “Absorption edge of silicon from solar cell spectral response measurements,” Appl. Phys. Lett. 66, 174–176 (1995). [CrossRef]
  26. R. Schnabel,M. Britzger, F. Brückner, O. Burmeister, K. Danzmann, J. Dück, T. Eberle, D. Friedrich, H. Lück, M. Mehmet, R. Nawrodt, S. Steinlechner, and B. Willke, “Building blocks for future detectors: silicon test masses and 1550nm laser light,” arxiv:0912.3164(2009)
  27. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces,” J. Cryst. Growth 52, 219–226 (1981). [CrossRef]
  28. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104, 163903 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited