OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5444–5453

Conversion of absorbed thermal radiation into visible using europium thenoyltrifluoroacetonate

Mariana Alfaro, Gonzalo Paez, and Marija Strojnik  »View Author Affiliations


Applied Optics, Vol. 49, Issue 28, pp. 5444-5453 (2010)
http://dx.doi.org/10.1364/AO.49.005444


View Full Text Article

Enhanced HTML    Acrobat PDF (805 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We evaluate the sensitivity and thermal resolution of the fluorescence of europium (III) thenoyltrifluoroacetonate (EuTTA) in order to convert absorbed thermal radiation into visible. We analyze the variation of the fluorescence properties of EuTTA (specifically, amplitude power and lifetime) after absorbed thermal radiation has caused a change in the local temperature of the material. We propose to analyze the thermal dependence of the fluorescence decay with an integral functional. Such operation correlates the variations of lifetime and amplitude in a single value. With this method of analysis, we study one param eter with increased thermal resolution and linear temperature dependence. The thermal resolution achieved with amplitude power is 0.11 K and with lifetime is 0.83 K at 305 K . The sensitivity of the integral functional is 25 nJ / K , yielding an increased thermal resolution of 0.07 K .

© 2010 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(160.1890) Materials : Detector materials
(160.2540) Materials : Fluorescent and luminescent materials

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 22, 2010
Revised Manuscript: August 31, 2010
Manuscript Accepted: September 1, 2010
Published: September 28, 2010

Citation
Mariana Alfaro, Gonzalo Paez, and Marija Strojnik, "Conversion of absorbed thermal radiation into visible using europium thenoyltrifluoroacetonate," Appl. Opt. 49, 5444-5453 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-28-5444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Gargano, N. Ludwig, M. Milazzo, and F. Pertrucci, “Recent developments of instruments for infrared reflectographic analyses of paintings,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp. 407–415.
  2. A. Barducci, D. Guzzi, P. Marcoionni, and I. Pippi, “Infrared detection of active fires and burnt areas: theory and observations,” Infrared Phys. Technol. 43, 119–125 (2002). [CrossRef]
  3. E. Apinaniz, A. Mendioroz, N. Madariaga, A. Oleaga, R. Celorrio, and A. Salazar, “Thermal characterization of rods, tubes and spheres using pulsed infrared thermography,” J. Phys. D 41, 015403 (2008). [CrossRef]
  4. M. Garbey, N. Sun, A. Merla, and I. Pavlidis, “Contact-free measurement of cardiac pulse based on the analysis of thermal imagery,” IEEE Trans. Biomed. Eng. 54, 1418–1426(2007). [CrossRef]
  5. A. Merla and G. L. Romani, “Functional infrared imaging: new approaches and applications of thermal imaging to medicine,” in Advanced Infrared Technology and Applications 2007, M.Strojnik, ed. (2008), pp, 417–423.
  6. A. J. Panas, M. Preiskorn, M. Dąbrowski, and S. Żmuda, “Validation of hard tooth tissue thermal diffusivity measurements with IR camera,” Infrared Phys. Technol. 49, 302–305 (2007). [CrossRef]
  7. C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Meas. Sci. Technol. 15, R27–R58(2004). [CrossRef]
  8. M. Garbuny, T. P. Vogl, and J. R. Hansen, “Image converter for thermal radiation,” J. Opt. Soc. Am. 51, 261–273 (1961). [CrossRef]
  9. M. Kleinerman, “Infrared image converter,” U.S. patent 3,639,765 (1 February 1972).
  10. M. S. Scholl, “Thermoanalytical studies of coprecipitated hydroxides of yttrium and aluminum for preparation of rare-earth doped YAG phosphors,” Proc. SPIE 2730, 572–575 (1995).
  11. M. S. Scholl, “Measured spatial properties of the cw Nd:YAG laser beam,” Appl. Opt. 19, 3655–3659 (1980). [CrossRef]
  12. R. Withnall, J. Silver, N. Wilstead, T. G. Ireland, and G. R. Fern, “Stimulation of visible luminescence by irradiation of a novel phosphor screen with an infrared beam,” Opt. Eng. 45, 024001 (2006). [CrossRef]
  13. F. Urbach, N. R. Nail, and D. Pearlman, “The observation of temperature distributions and of thermal radiation by means of non-linear phosphors,” J. Opt. Soc. Am. 39, 1011–1019(1949). [CrossRef]
  14. S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997). [CrossRef]
  15. A. L. Heyes, S. Seefeldt, and J. P. Feist, “Two-colour phosphor thermometry for surface temperature measurement,” Opt. Laser Technol. 38, 257–265 (2006). [CrossRef]
  16. A. I. Carlson, “Transient temperature response of thin film thermal detectors in infrared imaging systems,” Appl. Opt. 8, 243–253 (1969). [CrossRef]
  17. J. Castrellon, G. Paez, and M. Strojnik, “Radiometric analysis of a fiber optic temperature sensor,” Opt. Eng. 41, 1255–1261(2002). [CrossRef]
  18. J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43, 219–222 (2002). [CrossRef]
  19. G. Paez, V. Lopez, and M. Strojnik, “Experimental demonstration of erbium-doped fiber optic temperature sensor,” Proc. SPIE 5152, 381–390 (2003). [CrossRef]
  20. G. Paez and M. Strojnik, “Erbium-doped optical fiber fluorescence temperature sensor with enhanced sensitivity, a high signal-to-noise ratio, and a power ratio in the 520–530 and 550–560nm bands,” Appl. Opt. 42, 3251–3258 (2003). [CrossRef]
  21. M. S. Scholl and J. R. Trimmier, “Luminescence of YAG:TM:Tb,” J. Electrochem. Soc. 133, 643–648 (1986). [CrossRef]
  22. G. Paez, M. Strojnik, and J. Sandoval, “Feasibility concept for dynamic IR-to-visible converter,” Proc. SPIE 5076, 268–277(2003). [CrossRef]
  23. G. Paez and M. Strojnik, “Experimental results of ratio-based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003). [CrossRef]
  24. J. Sandoval, G. Paez, and M. Strojnik, “Er-doped silica dynamic IR-to-visible image converter,” Infrared Phys. Technol. 46, 141–145 (2004). [CrossRef]
  25. V. Lopez, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133–139 (2004). [CrossRef]
  26. V. Lopez, G. Paez, and M. Strojnik, “Characterization of up-conversion coefficient in erbium-doped materials,” Opt. Lett. 31, 1660–1662 (2006). [CrossRef]
  27. M. Strojnik-Scholl and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007). [CrossRef]
  28. B. Jiao, C. Li, D. Chen, T. Ye, S. Shi, Y. Ou, L. Dong, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel opto-mechanical uncooled infrared detector,” Infrared Phys. Technol. 51, 66–72 (2007). [CrossRef]
  29. R. Beaulieu, R. A. Lessard, and S. L. Chin, “Polyvinylidene fluoride films as infrared to visible converter material,” J. Appl. Phys. 79, 8038–8041 (1996). [CrossRef]
  30. D. Fengliang, Z. Qingchuan, C. Dapeng, P. Liang, G. Zheying, W. Weibing, D. Zhihui, and W. Xiaoping, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133, 236–242 (2007). [CrossRef]
  31. J. A. Stasiek and T. A. Kowalewski, “Thermochromic liquid crystals in heat transfer research,” Proc. SPIE 4759, 374–383 (2002). [CrossRef]
  32. J. Sandoval, G. Paez, and M. Strojnik, “Heat transfer analysis of a dynamic infrared-to-visible converter,” Opt. Eng. 42, 3517–3523 (2003). [CrossRef]
  33. G. A. Hornbeck, “Optical methods of temperature measurement,” Appl. Opt. 5, 179–186 (1966). [CrossRef]
  34. E. Van Keuren, M. Cheng, O. Albertini, C. Lou, J. Currie, and M. Paranjape, “Temperature profiles of microheaters using fluorescence microthermal imaging,” Sens. Mater. 17, 1–6(2005).
  35. P. Kolodner and J. A. Tyson, “Microscopic fluorescent imaging of surface temperature profiles with 0.01°C resolution,” Appl. Phys. Lett. 40, 782–784 (1982). [CrossRef]
  36. P. Kolodner and J. A. Tyson, “Remote thermal imaging with 0.7μm spatial resolution using temperature-dependent fluorescent thin films,” Appl. Phys. Lett. 42, 117–119 (1983). [CrossRef]
  37. T. Liu and J. P. Sullivan, Pressure and Temperature Sensitive Paints (Springer, 2005).
  38. B. T. Campbell, T. Liu, and J. P. Sullivan, “Temperature sensitive fluorescent paints systems,” AIAA paper 94-2483 (American Institute of Aeronautics and Astronautics, 1994).
  39. R. A. Gudmundsen, O. J. Marsh, and E. Matovich, “Fluorescence of europium thenoyltrifluoroacetonate. II. Determination of absolute quantum efficiency,” J. Chem. Phys. 39, 272–274 (1963). [CrossRef]
  40. M. L. Bhaumik, “Quenching and temperature dependence of fluorescence in rare-earth chelates,” J. Chem. Phys. 40, 3711–3715 (1964). [CrossRef]
  41. G. Paez, V. Lopez, and M. Strojnik, “Variable time constant of erbium-doped temperature sensor,” Proc. SPIE 5152, 381–390 (2003). [CrossRef]
  42. G. E. Khalil, K. Lau, G. P. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, “Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration,” Rev. Sci. Instrum. 75, 192–206 (2004). [CrossRef]
  43. B. B. J. Basu and N. Vasantharajan, “Temperature dependence of the luminescence lifetime of a europium complex immobilized in different polymer matrices,” J. Lumin. 128, 1701–1708 (2008). [CrossRef]
  44. G. Paez, M. Alfaro, and M. Strojnik, “Thermal characterization of europium thenoyltrifluoroacetonate for its use in formation of thermal images,” Proc. SPIE 6307, 63070G (2006).
  45. M. Alfaro, M. Strojnik, and G. Paez, “EuTTA fluorescence lifetime and spectral power characterization for its use as an active medium for IR-to-visible conversion,” Proc. SPIE 6678, 66781J (2007). [CrossRef]
  46. M. Strojnik and G. Paez, “Radiometry,” in Handbook of Optical Engineering, D.Malacara and B.J.Thompson, eds. (Marcel Dekker, 2001), Chap. 18, pp. 649–699.
  47. L. Rosso and V. C. Fernicola, “Time- and frequency-domain analyses of fluorescence lifetime for temperature sensing,” Rev. Sci. Instrum. 77, 034901 (2006). [CrossRef]
  48. V. C. Fernicola, L. Rosso, R. Galleano, T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Investigations on exponential lifetime measurements for fluorescence thermometry,” Rev. Sci. Instrum. 71, 2938–2943 (2000). [CrossRef]
  49. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998). [CrossRef]
  50. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer-Verlag, 1999).
  51. A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum. 70, 1233–1257 (1999). [CrossRef]
  52. R. C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” in Selected Papers on Semiconductor Infrared Detectors, A.Rogalski, ed., SPIE Milestone Series (1992), Vol. MS66, pp. 13–20.
  53. R. D. Hudson, Infrared System Engineering (Wiley, 1969).
  54. R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Oxford U. Press, 1968).
  55. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
  56. J. P. Holman, Heat Transfer (McGraw-Hill, 1997).
  57. M. Alfaro, G. Paez, and M. Strojink are preparing a manuscript to be called “2-D thermal imaging using fluorescence-based thermal to visible conversion.
  58. M. Henini and M. Razeghi, Handbook of Infrared Detection Technologies (Elsevier, 2002).
  59. A. Rogalski, “Infrared detectors for the future,” Acta Phys. Pol. A 116, 389–406 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited