OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5474–5479

Combination of scene-based and stochastic measurement for wide-field aberration correction in microscopic imaging

Michael Warber, Selim Maier, Tobias Haist, and Wolfgang Osten  »View Author Affiliations


Applied Optics, Vol. 49, Issue 28, pp. 5474-5479 (2010)
http://dx.doi.org/10.1364/AO.49.005474


View Full Text Article

Enhanced HTML    Acrobat PDF (624 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a novel aberration correction technique that uses the sequential combination of two different aberration measurement methods to correct for setup-induced and specimen-induced aberrations. The advantages of both methods are combined and, thus, the measurement time is strongly reduced without loss of accuracy. The technique is implemented using a spatial-light-modulator-based wide-field microscope without the need for additional components (e.g., a Shack–Hartmann sensor). The aberrations are measured without a reference object by directly using the specimen to be imaged. We demonstrate experimental results for technical as well as biological specimens.

© 2010 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(120.1088) Instrumentation, measurement, and metrology : Adaptive interferometry
(070.6120) Fourier optics and signal processing : Spatial light modulators
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Microscopy

History
Original Manuscript: May 10, 2010
Revised Manuscript: September 1, 2010
Manuscript Accepted: September 5, 2010
Published: September 30, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Michael Warber, Selim Maier, Tobias Haist, and Wolfgang Osten, "Combination of scene-based and stochastic measurement for wide-field aberration correction in microscopic imaging," Appl. Opt. 49, 5474-5479 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-28-5474


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002). [CrossRef] [PubMed]
  2. P. Török, S. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188, 158–172 (1997). [CrossRef]
  3. M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004). [CrossRef] [PubMed]
  4. R. Arimoto and J. Murray, “A common aberration with water-immersion objective lenses,” J. Microsc. 216, 49–51 (2004). [CrossRef] [PubMed]
  5. A. Wright, B. Patterson, S. Poland, J. Girkin, G. Gibson, and M. Padgett, “Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror,” Opt. Express 14, 222–228 (2006). [CrossRef] [PubMed]
  6. C. Paterson, I. Munro, and J. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175–185 (2000). [CrossRef] [PubMed]
  7. M. Loktev, D. De Lima Monteiro, and G. Vdivin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortion,” Opt. Commun. 192, 91–99 (2001). [CrossRef]
  8. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275–4285 (2005). [CrossRef] [PubMed]
  9. C. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991). [CrossRef] [PubMed]
  10. M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index mismatched media,” J. Microsc. 192, 90–98 (1998). [CrossRef]
  11. M. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London Ser. A 365, 2829–2843 (2007). [CrossRef]
  12. M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68–78(2004). [CrossRef]
  13. L. A. Poyneer, “Scene-based Shack–Hartmann wave-front sensing: analysis and simulation,” Appl. Opt. 42, 5807–5815(2003). [CrossRef] [PubMed]
  14. T. Haist, J. Hafner, M. Warber, and W. Osten, “Scene-based wavefront correction with spatial light modulators,” Proc. SPIE 7064, 70640M (2008). [CrossRef]
  15. M. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17, 1098–1107 (2000). [CrossRef]
  16. L. Seifert, J. Liesener, and H. Tiziani, “The adaptive Shack-Hartmann sensor,” Opt. Commun. 216, 313–319 (2003). [CrossRef]
  17. S. Chamot and C. Dainty, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14, 518–526 (2006). [CrossRef] [PubMed]
  18. A. Köhler, “Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke,” Z. wiss. Mikr. 10, 433–440 (1893).
  19. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2010). [CrossRef]
  20. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992).
  21. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15, 8176–8190 (2007). [CrossRef] [PubMed]
  22. J. Braat, “Polynomial expansion of severely aberrated wave fronts,” J. Opt. Soc. Am. A 4, 643–650 (1987). [CrossRef]
  23. J. Liesener, W. J. Hupfer, A. Gehner, and K. Wallace, “Tests on micromirror arrays for adaptive optics,” Proc. SPIE 5553, 319–329 (2004). [CrossRef]
  24. M. Vorontsov, G. Carhart, and J. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907–909 (1997). [CrossRef] [PubMed]
  25. T. Kalogeropoulos, “Improved stochastic optimization algorithms for adaptive optics,” Comput. Phys. Commun. 99, 255–269 (1997). [CrossRef]
  26. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003). [CrossRef]
  27. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, “Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A 13, 1456–1466 (1996). [CrossRef]
  28. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006). [CrossRef] [PubMed]
  29. M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited