OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 28 — Oct. 1, 2010
  • pp: 5486–5492

Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays

Rafał Kasztelanic  »View Author Affiliations


Applied Optics, Vol. 49, Issue 28, pp. 5486-5492 (2010)
http://dx.doi.org/10.1364/AO.49.005486


View Full Text Article

Enhanced HTML    Acrobat PDF (670 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper deals with a computer simulation and an experimental realization of an optical setup for automatic quality control of microlens arrays. The method is based on a 4 f coherent light correlator setup with an amplitude filter placed in the Fourier plane. The output intensity signal is proportional to the first derivative of the distortion of the input wavefront. An analysis can be carried out with the use of the Zernike polynomial expansion method. It must be carried out separately for each lens, but it allows for a more precise, quantitative assessment of their quality. What is important is that the analysis is computer-based and performed on the basis of the initial single optical measurement.

© 2010 Optical Society of America

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: July 6, 2010
Manuscript Accepted: August 10, 2010
Published: September 30, 2010

Citation
Rafał Kasztelanic, "Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays," Appl. Opt. 49, 5486-5492 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-28-5486


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Davidson and R. Keller, “Basics of a light microscopy imaging system and its application in biology,” in Methods in Cellular Imaging, A.Periasamy, ed. (Oxford, 2001), pp. 53–65.
  2. H. J. Tiziani, T. Haist, and S. Reuter, “Optical inspection and characterization of micro-optics using confocal microscopy,” Opt. Laser Eng. 36, 403–415 (2001). [CrossRef]
  3. D. Murphy, “Phase contrast microscopy,” in Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2001).
  4. S. Reichelt and H. Zappe, “Combined Twyman–Green and Mach–Zehnder interferometer for microlens testing,” Appl. Opt. 44, 5786–5792 (2005). [CrossRef] [PubMed]
  5. S. Reichelt, A. Bieber, B. Aatz, and H. Zappe, “Micro-optics metrology using advanced interferometry,” Proc. SPIE 5856, 437–446 (2005). [CrossRef]
  6. K. Kincaid, “Optical surface analyzers become precision manufacturing tools,” Laser Focus World 41, 89–93 (2005).
  7. S. C. West, "Interferometric Hartmann wave-front sensing for active optics at the 6.5-m conversion of the Multiple Mirror Telescope," Appl. Opt. 41, 3781–3789 (2002). [CrossRef] [PubMed]
  8. M. Davidson and M. Abramowitz, Encyclopedia of Imaging Science and Technology, J.Hornak, ed. (Wiley, 2002), Vol. II.
  9. E. Slayter and H. Slayter, “Imaging of phase objects,” in Light and Electron Microscopy, E.Slayter and H.Slayter, eds. (Cambridge, 1992), pp. 149–167.
  10. F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955). [CrossRef] [PubMed]
  11. G. Settles, Schlieren and Shadowgraph Techniques (Springer–Verlag, 2001). [CrossRef]
  12. L. Joannes, F. Dubois, and J. Legros, “Phase-shifting schlieren: High-resolution quantitative schlieren that uses the phase-shifting technique principle,” Appl. Opt. 42, 5046–5053(2003). [CrossRef] [PubMed]
  13. B. Zakharin and J. Stricker, “Schlieren systems with coherent illumination for quantitative measurements,” Appl. Opt. 43, 4786–4795 (2004). [CrossRef] [PubMed]
  14. T. Poon and K. B. Doh, “On the theory of optical Hilbert transform for incoherent objects,” Opt. Express 15, 3006–3011(2007). [CrossRef] [PubMed]
  15. R. Hoffman and L. Gross, “Modulation contrast microscope,” Appl. Opt. 14, 1169–1176 (1975). [CrossRef] [PubMed]
  16. B. Horwitz, “Phase image differentiation with linear intensity output,” Appl. Opt. 17, 181–186 (1978). [CrossRef] [PubMed]
  17. H. Kasprzak, “Differentiation of a noninteger order and its optical implementation,” Appl. Opt. 21, 3287–3291 (1982). [CrossRef] [PubMed]
  18. J. Lancis, T. Szoplik, E. Tajahuerce, V. Climent, and M.Fernández-Alonso, “Fractional derivative Fourier plane filter for phase change visualization,” Appl. Opt. 36, 7461–7464(1997). [CrossRef]
  19. E. Tajahuerce, T. Szoplik, J. Lancis, V. Climent, and M. Fernández-Alonso, “Phase-object fractional differentiation using Fourier plane filters,” Pure Appl. Opt. 6, 481–490(1997). [CrossRef]
  20. T. Szoplik, V. Climent, E. Tajahuerce, J. Lancis, and M. Fernández-Alonso, “Phase-change visualization in two-dimensional phase objects with a semiderivative real filter,” Appl. Opt. 37, 5472–5478 (1998). [CrossRef]
  21. A. Sagan, S. Nowicki, R. Buczyński, M. Kowalczyk, and T. Szoplik, “Imaging phase objects with square-root, Foucault, and Hoffman real filters: a comparison,” Appl. Opt. 42, 5816–5824 (2003). [CrossRef] [PubMed]
  22. R. Kasztelanic and A. Sagan, “Semiderivative real filter for micro-optical element quality control,” Opt. Rev. 16, 252–256(2009). [CrossRef]
  23. W. Southwell, “Wavefront estimation from wavefront slope measurements,” J. Opt. Soc. Am. 70, 998–1005 (1980). [CrossRef]
  24. T. M. Jeong, D. Ko, and J. Lee, "Method of reconstructing wavefront aberrations by use of Zernike polynomials in radial shearing interferometers," Opt. Lett. 32, 232–234 (2007). [CrossRef] [PubMed]
  25. W. Zou and J. Rolland, “Iterative zonal wave-front estimation algorithm for optical testing with general-shaped pupils,” J. Opt. Soc. Am. A 22, 938–951 (2005). [CrossRef]
  26. K. Freischlad and C. Koliopoulos, “Modal estimation of a wavefront from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. 3, 1852–1861(1986). [CrossRef]
  27. F. Roddier and C. Roddier, “Wavefront reconstruction using iterative Fourier transforms,” Appl. Opt. 30, 1325–1327(1991). [CrossRef] [PubMed]
  28. J. Hermann, “Least-squares wavefront errors of minimum norm,” J. Opt. Soc. Am. 70, 28–35 (1980). [CrossRef]
  29. S. Dingqiang, J. Shengtao, and S. Lianzhen, “A sort of algorithm of wavefront reconstruction for Shack–Hartmann test,” in Progress in Telescope and Instrumentation Technologies, M.H.Ulrich, eds. (European Southern Observatory, 1992), pp. 289–292.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited