OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 29 — Oct. 10, 2010
  • pp: 5510–5516

Sum-frequency mixing of radiation from two extended-cavity laser diodes using a doubly resonant external cavity for laser cooling of trapped ytterbium ions

Kazuhiko Sugiyama, Sho Kawajiri, Nobuhiko Yabu, Kanehiro Matsumoto, and Masao Kitano  »View Author Affiliations


Applied Optics, Vol. 49, Issue 29, pp. 5510-5516 (2010)
http://dx.doi.org/10.1364/AO.49.005510


View Full Text Article

Enhanced HTML    Acrobat PDF (518 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Over 100 μW of continuous-wave tunable ultraviolet radiation at 370 nm is generated by the sum- frequency mixing of radiation from two extended-cavity laser diodes having powers of 60 mW at 822 nm and 8 mW at 671 nm in a lithium iodate crystal. The crystal is placed in an external cavity that enhances the powers of two fundamental beams simultaneously by approximately 40. This light source is successfully applied to the laser cooling of trapped ytterbium ions.

© 2010 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(300.6520) Spectroscopy : Spectroscopy, trapped ion
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 28, 2010
Manuscript Accepted: August 24, 2010
Published: October 5, 2010

Citation
Kazuhiko Sugiyama, Sho Kawajiri, Nobuhiko Yabu, Kanehiro Matsumoto, and Masao Kitano, "Sum-frequency mixing of radiation from two extended-cavity laser diodes using a doubly resonant external cavity for laser cooling of trapped ytterbium ions," Appl. Opt. 49, 5510-5516 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-29-5510


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Schneider, E. Peik, and C. Tamm, “Sub-hertz optical frequency comparisons between two trapped Yb171+ ions,” Phys. Rev. Lett. 94, 230801 (2005). [CrossRef] [PubMed]
  2. K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the S21/2−F27/2 electric octupole transition in a single Yb171+ ion,” Phys. Rev. A 79, 033403 (2009). [CrossRef]
  3. S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manipulation and detection of a trapped Yb+ hyperfine qubit,” Phys. Rev. A 76, 052314 (2007). [CrossRef]
  4. C. Tamm, “A tunable light source in the 370 nm range based on an optically stabilized, frequency-doubled semiconductor laser,” Appl. Phys. B 56, 295–300 (1993) [CrossRef]
  5. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992). [CrossRef]
  6. D. Kielpinski, M. Cetina, J. A. Cox, and F. X. Kärtner, “Laser cooling of trapped ytterbium ions with an ultraviolet diode laser,” Opt. Lett. 31, 757–759 (2006). [CrossRef] [PubMed]
  7. K. Sasaki, K. Sugiyama, V. Barychev, and A. Onae, “Two-photon spectroscopy of the 6S-8S transitions in cesium using an extended-cavity diode laser,” Jpn. J. Appl. Phys. 39, 5310–5311 (2000). [CrossRef]
  8. S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, “Measurement of the lifetime of the 6pP1/2°2 level of Yb+,” Phys. Rev. A 80, 022502(2009). [CrossRef]
  9. D. J. Berkeland, F. C. Cruz, and J. C. Bergquist, “Sum-frequency generation of continuous-wave light at 194 nm,” Appl. Opt. 36, 4159–4162 (1997). [CrossRef] [PubMed]
  10. T. Fujii, H. Kumagai, K. Midorikawa, and M. Obara, “Development of a high-power deep-ultraviolet continuous-wave coherent light source for laser cooling of silicon atoms,” Opt. Lett. 25, 1457–1459 (2000). [CrossRef]
  11. K. Sugiyama, A. Wakita, and A. Nakata, “Diode-laser-based light sources for laser cooling of trapped Yb+ ions,” in Conference Digest of Conference on Precision Electromagnetic Measurements, J.Hunter and L.Johnson, eds. (IEEE, 2000), pp. 509–510.
  12. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980). [CrossRef]
  13. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” Appl. Phys. 39, 3597–3639(1968). [CrossRef]
  14. S. Guha and J. Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51, 50–60(1980). [CrossRef]
  15. H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, and W. J. Zhang, “Twice sum-frequency mixing of a dual-wavelength Nd:YALO3 laser to get 413.7 nm violet coherent radiation in LiIO3 crystal,” J. Appl. Phys. 70, 1880–1881 (1991). [CrossRef]
  16. R. C. Eckardt, H. Masuda, Y.-X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990). [CrossRef]
  17. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992). [CrossRef]
  18. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964). [CrossRef]
  19. M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single-frequency SHG in a passive ring resonator,” Opt. Commun. 38, 423–426 (1981). [CrossRef]
  20. K. Sugiyama, “Laser cooling of single Yb174+ ions stored in a RF trap,” Jpn. J. Appl. Phys. 38, 2141–2147 (1999). [CrossRef]
  21. K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S. Margolis, S. N. Lea, and P. Gill, “An optical frequency standard based on the electric octupole transition in Yb171+,” IEEE Trans. Instrum. Meas. 54, 759–762 (2005). [CrossRef]
  22. C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, and C. Wunderlich, “Electrodynamically trapped Yb+ ions for quantum information processing,” Phys. Rev. A 73, 041407(R) (2006). [CrossRef]
  23. Y. Onoda, M. Ikeda, K. Sugiyama, H. Yokoyama, and M. Kitano, “Maximization of second-harmonic power using normal-cut nonlinear crystals in a high-enhancement external cavity,” Appl. Opt. 48, 1366–1370 (2009). [CrossRef] [PubMed]
  24. A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, C. Tamm, and D. Schnier, “Laser cooling of trapped ytterbium ions using a four-level optical-excitation scheme,” Phys. Rev. A 44, R20–R23 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited