OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 29 — Oct. 10, 2010
  • pp: 5567–5574

Analysis and fabrication of corner cube array based on laser direct writing technology

Yimin Lou, Hui Wang, Qingkun Liu, Yaocheng Shi, and Sailing He  »View Author Affiliations


Applied Optics, Vol. 49, Issue 29, pp. 5567-5574 (2010)
http://dx.doi.org/10.1364/AO.49.005567


View Full Text Article

Enhanced HTML    Acrobat PDF (1208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A detailed analysis of corner cube array (CCA) structure is carried out using the commercially available ray-tracing software ZEMAX. The retroreflective properties of CCA for short-range and long-range propagation are compared. An improved CCA structure with a relatively low structural depth (compared with rectangular CCA) is designed and analyzed. Higher retroreflectance (compared with triangular CCA) at a specific incident angle is proved by ray tracing. Two kinds of CCA structures, including the improved CCA, have been fabricated using laser direct writing technology. The fabrication results are qualified by three-dimensional shape measurement and ray tracing.

© 2010 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: July 16, 2010
Revised Manuscript: September 2, 2010
Manuscript Accepted: September 9, 2010
Published: October 5, 2010

Citation
Yimin Lou, Hui Wang, Qingkun Liu, Yaocheng Shi, and Sailing He, "Analysis and fabrication of corner cube array based on laser direct writing technology," Appl. Opt. 49, 5567-5574 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-29-5567


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. J. Pister, D. S. Gunawan, and L. Lin, “Micromachined corner cube reflectors as a communication link,” Sens. Actuators A Phys. 47, 580–583 (1995). [CrossRef]
  2. K. Hyyppa, “Signal response of a laser beam scanner,” Opt. Eng. 33, 2770–2776 (1994). [CrossRef]
  3. O. Nakamara, M. Goto, K. Toyoda, N. Takai, T. Kurosawa, and T. Nakamata, “A laser tracking robot-performance calibration system using ball-seated bearing mechanisms and a spherically shaped cat’s eye retroreflector,” Rev. Sci. Instrum. 65, 1006–1011 (1994). [CrossRef]
  4. B. E. Hines, “Optical truss and retroreflector modeling for picometer laser metrology,” Proc. SPIE 1947, 198–208 (1993). [CrossRef]
  5. R. A. Chipman, J. Shamir, H. J. Caulfield, and Q. Zhou, “Wavefront correcting properties of corner-cube arrays,” Appl. Opt. 27, 3203–3209 (1988). [CrossRef] [PubMed]
  6. J. Fergason, “Optical system for head mounted display using retroreflector and method of displaying an image,” U.S. patent 5,621,572 (15 April 1997).
  7. R. Kijima and T. Ojika, “Transition between virtual environment and workstation environment with projective head-mounted display,” in IEEE 1997 Virtual Reality Annual International Symposium (IEEE, 1997), pp. 130–137. [CrossRef]
  8. M. Inami, N. Kawakami, D. Sekiguchi, Y. Yanagida, T. Maeda, and S. Tachi, “Visuo-haptic display using head-mounted projector,” in IEEE 2000 Virtual Reality Annual International Symposium (IEEE, 2000), pp. 233–240.
  9. H. Hua, C. Gao, F. Biocca, and J. P. Rolland, “An ultra-light and compact design and implementation of head-mounted projective displays,” in IEEE 2000 Virtual Reality Annual International Symposium (IEEE, 2001), pp. 175–182.
  10. H. Hua, L. Brown, and C. Gao, “SCAPE: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graphics Appl. 24, 66–75 (2004). [CrossRef]
  11. ASTM International, “Standard specification for retroreflective sheeting for traffic control,” Tech. Rep. ASTM D 4956-0 (2001).
  12. 3M Traffic Control Materials Division, “Product catalog for traffic control materials,” (2003), http://www.3M.com/tcm.
  13. T. L. Hoopman, “Cube-corner retroreflective articles having wide angularity in multiple viewing planes,” U.S. patent 4,588,258 (13 May 1986).
  14. D. C. O’Brien, G. E. Faulkner, and D. J. Edwards, “Optical properties of a retroreflecting sheet,” Appl. Opt. 38, 4137–4144 (1999). [CrossRef]
  15. H. D. Eckhardt, “Simple model of corner reflector phenomena,” Appl. Opt. 10, 1559–1566 (1971). [CrossRef] [PubMed]
  16. X. Zhu, V. S. Hsu, and J. M. Kahn, “Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness,” IEEE J. Sel. Top. Quantum Electron. 8, 26–32 (2002). [CrossRef]
  17. W. H. Venable Jr. and N. L. Johnson, “Unified coordinate system for retroreflectance measurements,” Appl. Opt. 19, 1236–1241 (1980). [CrossRef] [PubMed]
  18. J. J. Rennilson, “Retroreflection measurements: a review,” Appl. Opt. 19, 1234–1235 (1980). [CrossRef] [PubMed]
  19. G. H. Seward and P. S. Cort, “Measurement and characterization of angular reflectance for cube-corners and microspheres,” Opt. Eng. 38, 164–169 (1999). [CrossRef]
  20. J. Yuan, S. Chang, S. Li, and Y. Zhang, “Design and fabrication of micro-cube-corner array retroreflectors,” Opt. Commun. 209, 75–83 (2002). [CrossRef]
  21. H. Kim and B. Lee, “Optimal design of retroreflection corner cube sheets by geometric optics analysis,” Opt. Eng. 46, 094002 (2007). [CrossRef]
  22. H. Kim, S.-W. Min, and B. Lee, “Geometrical optics analysis of the structural imperfection of retroreflection corner cubes with a nonlinear conjugate gradient method,” Appl. Opt. 47, 6453–6469 (2008). [CrossRef] [PubMed]
  23. E. Brinksmeier, R. Gläbe, and C. Flucke, “Manufacturing of molds for replication of micro cube corner retroreflectors,” Prod. Eng. Res. Devel. 2, 33–38 (2008). [CrossRef]
  24. K. Reimer, R. Engelke, U. Hofmann, P. Merz, K. T. Kohlmann-von Platen, and B. Wagner, “Progress in gray-tone lithography and replication techniques for different materials,” Proc. SPIE 3879, 98–108 (1999). [CrossRef]
  25. H. Hockel, R. Martins, J. Sung, and E. G. Johnson, “Design and fabrication of trihedral corner-cube arrays using analog exposure based on phase masks,” Proc. SPIE 5720, 78–85 (2005). [CrossRef]
  26. K. I. Jolic, M. K. Ghantasala, and E. C. Harvey, “Excimer laser machining of corner cube structures,” J. Micromech. Microeng. 14, 388–397 (2004). [CrossRef]
  27. P. K. Weng and J. Shie, “A revolving retroreflective marker for an optical tachometer,” Sens. Actuators A Phys. 24, 203–207 (1990). [CrossRef]
  28. G. W. Neudeck, J. Spitz, J. C. H. Chang, J. P. Denton, and N. Gallagher, “Precision crystal corner cube arrays for optical gratings formed by (100) silicon planes with selective epitaxial growth,” Appl. Opt. 35, 3466–3470 (1996). [CrossRef] [PubMed]
  29. M. T. Gale, M. Rossi, J. Pedersen, and H. Schulz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994). [CrossRef]
  30. K. Zimmer, D. Hirsch, and F. Big, “Excimer laser machining for the fabrication of analogous microstructures,” Appl. Surf. Sci. 96–98, 425–429 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited