OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 29 — Oct. 10, 2010
  • pp: 5583–5591

Diffractive-optics-based sensor as a tool for detection of biocompatibility of titanium and titanium-doped hydrocarbon samples

Raimo Silvennoinen, Stanislav Hasoň, Vladimír Vetterl, Niko Penttinen, Martti Silvennoinen, Kari Myller, Pavlína Černochová, Sonia Bartáková, Patrik Prachár, and Ladislav Cvrček  »View Author Affiliations


Applied Optics, Vol. 49, Issue 29, pp. 5583-5591 (2010)
http://dx.doi.org/10.1364/AO.49.005583


View Full Text Article

Enhanced HTML    Acrobat PDF (814 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Adsorption of the elongated human plasma fibrinogen (HPF) and globular human serum albumin molecules on a titanium-based surface is monitored by analyzing permittivity and optical roughness of protein-modified surfaces by using a diffractive optical element (DOE)-based sensor and variable angle spectro-ellipsometry (VASE). Both DOE and VASE confirmed that fibrinogen forms a thicker and more packed surface adlayer compared to a more porous and weakly adsorbed albumin adlayer. A linear relation of the permittivity ( ε ) and dielectric loss ( ε ) was found for some of the dry titanium-doped hydrocarbon (TDHC) surfaces with excellent HPF adsorption ability. We discuss some aspects of TDHC’s aging and its possible effects on fibrinogen adsorption.

© 2010 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(170.1850) Medical optics and biotechnology : Dentistry
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(240.5770) Optics at surfaces : Roughness
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 2, 2010
Revised Manuscript: August 4, 2010
Manuscript Accepted: August 28, 2010
Published: October 7, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Raimo Silvennoinen, Stanislav Hasoň, Vladimír Vetterl, Niko Penttinen, Martti Silvennoinen, Kari Myller, Pavlína Černochová, Sonia Bartáková, Patrik Prachár, and Ladislav Cvrček, "Diffractive-optics-based sensor as a tool for detection of biocompatibility of titanium and titanium-doped hydrocarbon samples," Appl. Opt. 49, 5583-5591 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-29-5583


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Walivaara, B. O. Aronsson, M. Rodahl, J. Lausmaa, and P. Tengvall, “Titanum with different oxides—in-vitro studies of protein adsorption and contact activation,” Biomaterials 15, 827–834 (1994). [CrossRef] [PubMed]
  2. V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, “Dynamic aspects of protein adsorption onto titanium surfaces: mechanism of desorption into buffer and release in the presence of proteins in the bulk,” Langmuir 12, 1614–1621 (1996). [CrossRef]
  3. M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, and T. L. Parker, “Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardio vascular applications,” J. Biomed. Mater. Res. 52, 413–421(2000). [CrossRef] [PubMed]
  4. Y. Yang, R. Cavin, and J. L. Ong, “Protein adsorption on titanium surfaces and their effect on osteoblast attachment,” J. Biomed. Mater. Res. A. 67, 344–349 (2003). [CrossRef] [PubMed]
  5. N. Juany, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, “Hemocompatibility of titanium oxide films,” Biomaterials 24, 2177–2187 (2003). [CrossRef]
  6. F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spenser, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids Surf. B 24, 155–170 (2002). [CrossRef]
  7. K. Imamura, M. Shimomura, S. Nagai, M. Akamatsu, and K. Nakanishi, “Adsorption characteristics of various proteins to a titanium surface,” J. Biosci. Bioeng. 106, 273–278 (2008). [CrossRef] [PubMed]
  8. D. L. Cochran, “A comparison of endosseous dental implant surfaces,” J. Periodontol. Periodontics 70, 1523–1539 (1999). [CrossRef]
  9. T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomater. 20, 1221–1227 (1999). [CrossRef]
  10. P. M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F. H. Jones, and M. Tonetti, “Roughness response genes in osteoblasts,” Bone 35, 124–133 (2004). [CrossRef] [PubMed]
  11. E. Jansoon and P. Tengvall, “Adsorption of albumin and IgG to porous and smooth titanium,” Colloids Surf. B 35, 45–51 (2004). [CrossRef]
  12. P. Cacciafesta, A. D. L. Humphris, K. D. Jandt, and M. J. Miles, “Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy,” Langmuir 16, 8167–8175 (2000). [CrossRef]
  13. P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles, and K. D. Jandt, “Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness,” Surf. Sci. 491, 405–420 (2001). [CrossRef]
  14. H. Nygren, P. Tengvall, and I. Lundstrom, “The initial reactions of TiO2 with blood,” J. Biomed. Mater. Res. 34, 487–492 (1997). [CrossRef] [PubMed]
  15. S. Kidoaki and T. Matsuda, “Adhesion forces of the blood plasma proteins on self- assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope,” Langmuir 15, 7639–7646 (1999). [CrossRef]
  16. A. G. Hemmersam, M. Foss, J. Chevallier, and F. Besenbacher, “Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique,” Colloids Surf. B 43, 208–215 (2005). [CrossRef]
  17. M. Rouahi, E. Champion, O. Gallet, A. Jada, and K. Anselme, “Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering,” Colloids Surf. B 47, 10–19 (2006). [CrossRef]
  18. I. van derKeere, R. Willaert, A. Hubin, and J. Vereecken, “Interaction of human plasma fibrinogen with commercially pure titanium as studied with atomic force microscope and x-ray photoelectron spectroscopy,” Langmuir 24, 1844–1852 (2008). [CrossRef]
  19. J. M. Garguilio, B. A. Daves, M. Buddie, F. A. M. Köck, and R. J. Nemanich, “Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films,” Diam. Relat. Mater. 13, 595–599 (2004). [CrossRef]
  20. X. Wang, L. Yu, C. Li, F. Zhang, Z. Zheng, and X. Liu, “Competitive adsorption behaviour of human serum albumin and fibrinogen on titanium oxide films coated on LTI-carbon by IBED,” Colloids Surf. B 30, 111–121 (2003). [CrossRef]
  21. C. Galli, M. C. Coen, R. Hauert, V. L. Katanaev, M. P. Wymann, P. Gröning, and L. Schlapbach, “Protein adsorption on topographically nanostructured titanium,” Surf. Sci. Lett. 474, L180–L184 (2001). [CrossRef]
  22. W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu, and H. Zreiqat, “DLC coatings: effect of physical and chemical properties on biological response,” Biomaterials 28, 1620–1628 (2007). [CrossRef] [PubMed]
  23. K. Cai, J. Bossert, and K. D. Jandt, “Does the nanometer scale topography of titanium influence protein adsorption and cell proliferation?” Colloids Surf. B 49, 136–144 (2006). [CrossRef]
  24. A. Choukourova, A. Grinevicha, D. Slavinska, H. Biedermana, N. Saitob, and O. Takaib, “Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films,” Surf. Sci. 602, 1011–1019 (2008). [CrossRef]
  25. A. Grinevich, L. Bacakova, A. Choukourov, H. Boldyryeva, Y. Pihosh, D. Slavinska, L. Noskova, M. Skuciova, V. Lisa, and H. Biederman, “Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells,” J. Biomed. Mater. Res. A. 88, 952–966 (2009). [CrossRef]
  26. R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Sensing of parameters behind attachment of human plasma fibrinogens on carbon doped titanium sur1aces: an optical study,” Proc. SPIE 7388, 73881A (2009). [CrossRef]
  27. R. Silvennoinen, V. Vetterl, S. Hasoň, M. Silvennoinen, K. Myller, J. Vanek, and L. Cvrček, “Optical sensing of attached fibrinogen on carbon doped titanium surfaces,” Adv. Opt. Technol. 2010, 942349, doi:10.1155/2010/942349. [CrossRef]
  28. T. Vitu, T. Polcar, L. Cvrcek, R. Novak, J. Macak, J. Vyskocil, and A. Cavaleiro, “Structure and tribology of biocompatible Ti–C:H coatings,” Surf. Coat. Technol. 202, 5790–5793 (2008). [CrossRef]
  29. T. Polcara, T. Vitu, L. Cvrcekd, R. Novak, J. Vyskocild, and A. Cavaleirob, “Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications,” Solid State Sci. 11, 1757–1761 (2009). [CrossRef]
  30. J. Räsänen, M. Savolainen, R. Silvennoinen, and K. Peiponen, “Optical sensing of surface roughness and waviness by computer generated hologram,” Opt. Eng. 34, 2574–2580(1995). [CrossRef]
  31. R. Silvennoinen, “Sensing of waviness of glossy and rough surface by DOE sensor,” Proc. SPIE 7388, 73880N (2009). [CrossRef]
  32. R. Silvennoinen, K-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).
  33. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surface (Pergamon, 1963).
  34. R. Silvennoinen, V. Vetterl, S. Hasoň, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrček, J. Vaněk, and P. Prachár, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140(2008). [CrossRef] [PubMed]
  35. S. Donati, “Coupling dynamics in lasers and applications in self-mixing interferometry,” in Summaries of the 2nd International Meeting on Optical Sensing and Artificial Vision(Editorial Department of Saint Petersburg State University of Information Technologies, Mechanics and Optics, 2008), p. 67.
  36. O. V. Angelsky, and P. P. Maksimyak, “Optical Diagnostics of random phase objects,” Appl. Opt. 29, 2894–2898 (1990). [CrossRef] [PubMed]
  37. O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Optical correlation diagnostics of rough surfaces with large surface inhomogeneities,” Opt. Express 14, 7299–7311 (2006). [CrossRef] [PubMed]
  38. R. A. M. Azzam and N. M. Bashra, Ellipsometry and Polarized Light (North-Holland, 1977).
  39. S-M. F. Nee and T-W. Nee, “Principal Mueller matrix of reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. 41, 994–1001 (2002). [CrossRef]
  40. A-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009). [CrossRef] [PubMed]
  41. J.-M. Zhang, F. Ma, K.-W. Xu, and X.-T. Xin, “Anisotropy analysis of the surface energy of diamond cubic crystals,” Surf. Interface Anal. 35, 805–809 (2003). [CrossRef]
  42. S. Bar-Chaput and C. Carrot, “Interactions of active carbon with low- and high-molecular weight polyethylene glycol and polyethylene oxide,” J. Appl. Polym. Sci. 100, 3490–3497(2006). [CrossRef]
  43. W. Brandl, G. Marginean, V. Chirila, and W. Warschewski, “Production and characterisation of vapour grown carbon fiber/polypropylene composites,” Carbon 42, 5–9 (2004). [CrossRef]
  44. X. H. Zhang, A. Quinn, and W. A. Ducker, “Nanobubbles at the interface between water and hydrophobic solid,” Langmuir 24, 4756–4764 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited