OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 29 — Oct. 10, 2010
  • pp: 5614–5625

Faraday modulation spectrometry of nitric oxide addressing its electronic X 2 Π A 2 Σ + band: II. experiment

Jie Shao, Lemthong Lathdavong, Jonas Westberg, Pawel Kluczynski, Stefan Lundqvist, and Ove Axner  »View Author Affiliations

Applied Optics, Vol. 49, Issue 29, pp. 5614-5625 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (866 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A first demonstration of Faraday modulation spectrometry (FAMOS) of nitric oxide (NO) addressing its strong electronic X 2 Π ( ν = 0 ) A 2 Σ + ( ν = 0 ) band is presented. The instrumentation was constructed around a fully diode-laser-based laser system producing mW powers of ultraviolet light targeting the overlapping Q 22 ( 21 / 2 ) and R 12 Q ( 21 / 2 ) transitions at 226.6 nm . The work verifies a new two-transition model of FAMOS addressing the electronic transitions in NO given in an accompanying work. Although the experimental instrumentation could address neither the parameter space of the theory nor the optimum conditions, the line shapes and the pressure dependence could be verified under low-field conditions. NO could be detected down to a partial pressure of 13 µTorr , roughly corresponding to 10 ppb · m for an atmospheric pressure sample, which demonstrates the feasibility of FAMOS for sensitive detection of NO addressing its strong electronic band.

© 2010 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7490) Atomic and molecular physics : Zeeman effect
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: May 27, 2010
Manuscript Accepted: August 12, 2010
Published: October 8, 2010

Jie Shao, Lemthong Lathdavong, Jonas Westberg, Pawel Kluczynski, Stefan Lundqvist, and Ove Axner, "Faraday modulation spectrometry of nitric oxide addressing its electronic X2Π−A2Σ+ band: II. experiment," Appl. Opt. 49, 5614-5625 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. T. Piver, “Global atmospheric changes,” Environ. Health Perspect. 96, 131–137 (1991). [CrossRef] [PubMed]
  2. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998), p. 1326.
  3. Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharmaceut. Des. 5, 417–441 (1999).
  4. M. Radojevic, “Reduction of nitrogen oxides in flue gases,” Environ. Pollut. 102, 685–689 (1998). [CrossRef]
  5. P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128, 137–150 (2002). [CrossRef]
  6. L. J. Ignarro, “Nitric oxide—a novel signal transduction mechanism for transcellular communication,” Hypertension 16, 477–483 (1990). [PubMed]
  7. C. Napoli and L. J. Ignarro, “Nitric oxide and atherosclerosis,” NO 5, 88–97 (2001). [CrossRef]
  8. L. J. Ignarro, C. Napoli, and J. Loscalzo, “Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide—An overview,” Circ. Res. 90, 21–28 (2002). [CrossRef] [PubMed]
  9. B. S. Taylor, Y. M. Kim, Q. Wang, R. A. Shapiro, T. R. Billiar, and D. A. Geller, “Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression,” Arch. Surg. (Chicago) 132, 1177–1183 (1997). [CrossRef]
  10. L. C. McKinney, S. J. Galliger, and R. J. Lowy, “Active and inactive influenza virus induction of tumor necrosis factor-alpha and nitric oxide in J774.1 murine macrophages: modulation by interferon-gamma and failure to induce apoptosis,” Virus Res. 97, 117–126 (2003). [CrossRef] [PubMed]
  11. C. Napoli and L. J. Ignarro, “Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases,” Arch. Pharm. Res. 32, 1103–1108 (2009). [CrossRef] [PubMed]
  12. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  13. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002). [CrossRef]
  14. A. Fried and D. Richter, “Infrared absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurements, D.Heard, ed. (Blackwell, 2006), 72–146. [CrossRef]
  15. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982). [CrossRef] [PubMed]
  16. D. T. Cassidy and J. Reid, “High-sensitivity detection of trace gases using sweep integration and tunable diode lasers,” Appl. Opt. 21, 2527–2530 (1982). [CrossRef] [PubMed]
  17. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption-Spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  18. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999). [CrossRef]
  19. P. Kluczynski, J. Gustafsson, Å M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277–1354 (2001). [CrossRef]
  20. A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203–214 (2002). [CrossRef]
  21. M. G. Allen and W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31μm diode lasers,” AIAA J. 34, 483–488 (1996). [CrossRef]
  22. M. G. Allen, K. L. Carleton, S. J. Davis, and W. J. Kessle, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995). [CrossRef] [PubMed]
  23. K. C. Clemitshaw, “A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry,” Crit. Rev. Environ. Sci. Technol. 34, 1–108 (2004). [CrossRef]
  24. T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006). [CrossRef]
  25. S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009). [CrossRef]
  26. L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry—Part 1. Potentials,” Glass Sci. Technol. 77, 68–76(2004).
  27. D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997). [CrossRef]
  28. D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36, 3294–3297(1997). [CrossRef] [PubMed]
  29. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998). [CrossRef]
  30. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998). [CrossRef]
  31. J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, “Characterization of on-road vehicle NO emissions by a TILDAS remote sensor,” J. Air Waste Manage. Assoc. 49, 463–470 (1999).
  32. M. Snels, C. Corsi, F. D’Amato, M. De Rosa, and G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser,” Opt. Commun. 159, 80–83 (1999). [CrossRef]
  33. J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers,” Environ. Sci. Technol. 34, 2380–2387 (2000). [CrossRef]
  34. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398(1998). [CrossRef]
  35. S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Rapid scan (Doppler-limited) absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE 3758, 23–33 (1999). [CrossRef]
  36. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001). [CrossRef]
  37. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863 (2001).
  38. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350(2002). [CrossRef]
  39. W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002). [CrossRef]
  40. A. A. Kosterev, C. Roller, and F. K. Tittel, “Applications of pulsed quantum cascade lasers to NO monitoring in industrial exhaust gases,” in Proceedings of the IEEE Sensors, Vols. 1 and 2 (IEEE, 2003), pp. 673–674.
  41. Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003). [CrossRef]
  42. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004). [CrossRef] [PubMed]
  43. R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, S. Quan, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta A 60, 3437–3447 (2004). [CrossRef]
  44. C. Mann, Q. K. Yang, F. Fuchs, N. Bronner, K. Kohler, T. Beyer, T. Braun, and A. Lambrecht, “Single-mode InP-based quantum cascade lasers for applications in trace-gas sensing,” Proc. SPIE 5365, 173–183 (2004). [CrossRef]
  45. C. Mann, Q. Yang, F. Fuchs, W. Bronner, K. Kohler, and J. Wagner, “Single-mode quantum cascade lasers for applications in trace-gas sensing,” TM. Tech. Mess. 72, 356–365(2005). [CrossRef]
  46. G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617–625(2005). [CrossRef]
  47. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81, 705–710 (2005). [CrossRef]
  48. Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2006). [CrossRef]
  49. B. W. M. Moeskops, S. M. Cristescu, and F. J. M. Harren, “Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser,” Opt. Lett. 31, 823–825 (2006). [CrossRef] [PubMed]
  50. J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm−1,” Appl. Phys. B 85, 235–241(2006). [CrossRef]
  51. D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006). [CrossRef] [PubMed]
  52. M. R. McCurdy, Y. A. Bakhirkin, and F. K. Tittel, “Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide,” Appl. Phys. B 85, 445–452 (2006). [CrossRef]
  53. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, and F. K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy,” J. Biomed. Opt. 12 (2007). [CrossRef] [PubMed]
  54. J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008). [CrossRef]
  55. G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009). [CrossRef]
  56. J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb•m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24, 2294–2306(2007). [CrossRef]
  57. S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117(2002). [CrossRef]
  58. A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on zeeman modulation of absorption,” Science 176, 508–510 (1972). [CrossRef] [PubMed]
  59. W. Urban and W. Herrmann, “Zeeman Modulation Spectroscopy with spin-flip Raman laser,” Appl. Phys. 17, 325–330(1978). [CrossRef]
  60. G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980). [CrossRef]
  61. W. Herrmann, W. Rohrbeck, and W. Urban, “Line-Shape Analysis for Zeeman Modulation Spectroscopy,” Appl. Phys. 22, 71–75 (1980). [CrossRef]
  62. A. Hinz, J. Pfeiffer, W. Bohle, and W. Urban, “Mid-infrared laser magnetic-resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139(1982). [CrossRef]
  63. T. A. Blake, C. Chackerian, and J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt. 35, 973–985 (1996). [CrossRef] [PubMed]
  64. H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003). [CrossRef]
  65. C. V. Suschek, P. Schroeder, O. Aust, H. Sies, C. Mahotka, M. Horstjann, H. Ganser, M. Murtz, P. Hering, O. Schnorr, K. D. Kroncke, and V. Kolb-Bachofen, “The presence of nitrite during UVA irradiation protects from apoptosis,” FASEB J. 17, 2342–2344 (2003). [PubMed]
  66. H. Ganser, M. Horstjann, C. V. Suschek, P. Hering, and M. Murtz, “Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique,” Appl. Phys. B 78, 513–517 (2004). [CrossRef]
  67. R. Gäbler and J. Lehmann, “Sensitive and isotope selective (NO14/NO15) online detection of nitric oxide by Faraday-laser magnetic resonance spectroscopy,” Nitric Oxide 396, 54–60 (2005).
  68. T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723(2008). [CrossRef]
  69. R. Lewicki, G. Wysocki, J. Doty, R. F. Curl, and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33μm using an external cavity QCL-based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics (2008) (Optical Society of America, 2008), pp. 514–515.
  70. T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, and M. Murtz, “NO detection in biological samples: Differentiation of NO14 and NO15 using infrared laser spectroscopy,” Nitric Oxide 19, 50–56 (2008). [CrossRef] [PubMed]
  71. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106, 12587–12592 (2009). [CrossRef] [PubMed]
  72. H. Sabana, T. Fritsch, M. B. Onana, O. Bouba, P. Hering, and M. Murtz, “Simultaneous detection of NO14 and NO15 using Faraday modulation spectroscopy,” Appl. Phys. B 96, 535–544 (2009). [CrossRef]
  73. P. Kluczynski and S. Lundqvist, Siemens AB, IIA SLA R&D, Box 14153, SE-400 20 Göteborg, Sweden, and J. Westberg and O. Axner, Department of Physics, Umeå University, SE-901 87 Umeå, Sweden, are preparing a manuscript to be called "Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 µm."
  74. The FAMOS technique also has appeared under a few other names throughout the years, e.g., magnetic rotation spectroscopy (MRS) , Zeeman modulation spectroscopy (ZMS) , and, most recently, Faraday rotation spectroscopy (FRS) . Originally, however, MRS referred to a technique in which a static field was used to study both magnetic circular birefringence and dichroism .
  75. K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10T,” J. Chem. Phys. 110, 9492–9499 (1999). [CrossRef]
  76. K. Takazawa and H. Abe, “Landau level of gaseous nitric oxide studied by two-color multiphoton ionization spectroscopy,” J. Chem. Phys. 110, 11682–11684 (1999). [CrossRef]
  77. K. Takazawa, H. Abe, and H. Wada, “Zeeman electronic spectra of gaseous NO in very high magnetic fields up to 25T,” Chem. Phys. Lett. 329, 405–411 (2000). [CrossRef]
  78. K. Takazawa, “Laser-induced fluorescence excitation spectra due to the B2Π(ν″=0)−X2Π(ν′=0) transition of NO in magnetic fields up to 10T,” J. Mol. Spectrosc. 223, 120–124(2004). [CrossRef]
  79. D. W. Robinson, “Magnetic Rotation Spectrum of the A2Σ+−X2Πr Transition in NO. I,” J. Chem. Phys. 46, 4525–4529(1967). [CrossRef]
  80. D. W. Robinson, “Magnetic Rotation Spectrum of the A2Σ+−X2Πr Transition in NO. II,” J. Chem. Phys. 50, 5018–5026(1969). [CrossRef]
  81. L. Lathdavong, J. Westberg, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Faraday modulation spectrometry of nitric oxide addressing its electronic X2Π−A2Σ+ band: I. Theory,” Appl. Opt. 49, 5597–5613 (2010). [CrossRef] [PubMed]
  82. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand Reinhold, 1950).
  83. As a consequence of a weak coupling between the rotation of the nuclei and the orbital angular momentum of the electron, each lower state is additionally split into two states with opposite symmetry (+ and −, respectively) by a so-called Λ doubling. Since this splitting is smaller than the spin-splitting as well as the separation between consecutive rotational levels, and transitions are allowed only between states of dissimilar symmetry, this splitting does not give rise to any additional transitions; it can therefore be seen as a perturbation that only shifts the transitions slightly in frequency.
  84. N is the quantum number that corresponds to the rotational energy of a state that lacks orbital angular momentum (i.e., Λ=0) and adheres to Hund’s case (b), given by BN(N+1) and associated with the operator (J−S)2, where J and S are the operators for the total angular momentum and the electronic spin, respectively. Although not formally correct, N can, for convenience, be associated with the rotation of the nuclei.
  85. J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992). [CrossRef]
  86. The six branches from the Π1/22 state are P11(J″), Q11(J″), R11(J″) (for which ΔN=ΔJ), and P21Q(J″), Q21R(J″), and R21S(J″) (for which ΔN=ΔJ+1), whereas those from the Π3/22 state are P22(J″), Q22(J″), R22(J″) (for which ΔN=ΔJ), and P12O(J″), Q12P(J″), and R12Q(J″) (for which ΔN=ΔJ−1).
  87. Here,we have utilized the same nomenclature as in Ref. , i.e., a tilde sign indicates that the entity is given in units of inverse centimeters, whereas an overbar shows that the entity is dimensionless. The superscript D indicates that it is normalized with respect to δν˜D/ln⁡2.
  88. J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010). [CrossRef]
  89. A. Y. Chang, M. D. Dirosa, and R. K. Hanson, “Temperature-dependence of collision broadening and shift in the NO A—X (0,0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992). [CrossRef]
  90. R. Freedman and R. W. Nicholls, “Molecular constants for the ν″=0(X2Π) and ν′=0(A2Σ+) levels of the NO molecule and its isotopes,” J. Mol. Spectrosc. 83, 223–227 (1980). [CrossRef]
  91. A. Timmermann and R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981). [CrossRef]
  92. M.-S. Chou, A. M. Dean, and D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970(1983). [CrossRef]
  93. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  94. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  95. M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155 (2006). [CrossRef]
  96. L. G. Piper and L. M. Cowles, “Einstein coefficients and transition-moment variation for the NO(A2Σ+−X2Π)) transition,” J. Chem. Phys. 85, 2419–2422 (1986). [CrossRef]
  97. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953). [CrossRef]
  98. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223(1961). [CrossRef]
  99. S. G. Rautian and I. I. Sobelman, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967). [CrossRef]
  100. A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996). [CrossRef]
  101. G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009). [CrossRef] [PubMed]
  102. C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited