OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 3 — Jan. 20, 2010
  • pp: 334–342

Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra

Lei Bi, Ping Yang, George W. Kattawar, and Ralph Kahn  »View Author Affiliations


Applied Optics, Vol. 49, Issue 3, pp. 334-342 (2010)
http://dx.doi.org/10.1364/AO.49.000334


View Full Text Article

Enhanced HTML    Acrobat PDF (1053 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the “equivalent sphere” model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

© 2010 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(080.0080) Geometric optics : Geometric optics
(260.0260) Physical optics : Physical optics
(290.0290) Scattering : Scattering

ToC Category:
Scattering

History
Original Manuscript: July 6, 2009
Revised Manuscript: November 20, 2009
Manuscript Accepted: November 23, 2009
Published: January 12, 2010

Citation
Lei Bi, Ping Yang, George W. Kattawar, and Ralph Kahn, "Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra," Appl. Opt. 49, 334-342 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-3-334

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited