OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 3 — Jan. 20, 2010
  • pp: 334–342

Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra

Lei Bi, Ping Yang, George W. Kattawar, and Ralph Kahn  »View Author Affiliations

Applied Optics, Vol. 49, Issue 3, pp. 334-342 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1053 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the “equivalent sphere” model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

© 2010 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(080.0080) Geometric optics : Geometric optics
(260.0260) Physical optics : Physical optics
(290.0290) Scattering : Scattering

ToC Category:

Original Manuscript: July 6, 2009
Revised Manuscript: November 20, 2009
Manuscript Accepted: November 23, 2009
Published: January 12, 2010

Lei Bi, Ping Yang, George W. Kattawar, and Ralph Kahn, "Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra," Appl. Opt. 49, 334-342 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, 1991).
  2. P. Chýlek and J. Coakley, “Aerosols and climate,” Science 183, 75-77 (1974). [CrossRef]
  3. J. Haywood and O. Boucher, “Estimates of the direct and indirect radiative forcing due to troposphere aerosols: a review,” Rev. Geophys. 38, 513-544 (2000). [CrossRef]
  4. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate, and the hydrological cycle,” Science 294, 2119-2124 (2001). [CrossRef]
  5. I. N. Sokolik, D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, “Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust,” J. Geophys. Res. 106, 18015-18027 (2001). [CrossRef]
  6. Y. J. Kaufman, D. Tanre, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-222 (2002). [CrossRef]
  7. H. Volten, O. Muñoz, J. W. Hovenier, and L. B. F. M. Waters, “An update of the Amsterdam light scattering database,” J. Quant. Spectrosc. Radiat. Transfer 100, 437-443 (2006). [CrossRef]
  8. R. A. West, L. R. Doose, A. M. Eibl, M. G. Tomasko, and M. I. Mishchenko, “Laboratory measurements of mineral dust scattering phase function and linear polarization,” J. Geophys. Res. 102, 16871-16881 (1997). [CrossRef]
  9. D. B. Curtis, B. Meland, M. Aycibin, N. P. Arnold, V. H. Grassian, M. A. Young, and P. D. Kleiber, “A laboratory investigation of light scattering from representative components of mineral dust aerosols at a wavelength of 550 nm,” J. Geophys. Res. 113, D08210 (2008). [CrossRef]
  10. O. V. Kalashnikova and I. N. Sokolik, “Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014947 (2002). [CrossRef]
  11. M. I. Mishchenko, A. A. Lacis, B. E. Carlson, and L. D. Travis, “Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077-1080 (1995). [CrossRef]
  12. Q. Feng, P. Yang, G. W. Kattawar, C. N. Hsu, S.-C. Tsay, and I. Laszlo, “Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations,” J. Aerosol Sci. 40, 776-789 (2009). [CrossRef]
  13. M. Kahnert, T. Nousiainen, and B. Veihelmann, “Spherical and spheroidal model particles as an error source in aerosol climate forcing and radiance computations: a case study for feldspar aerosols,” J. Geophys. Res. 110, D18S13 (2005). [CrossRef]
  14. M. Kahnert, T. Nousiainen, and P. Raisanen, “Mie simulations as an error source in mineral aerosol radiative forcing calculations,” Q. J. R. Meteorol. Soc. 133, 299-307 (2007). [CrossRef]
  15. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000), pp. 327.
  16. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  18. T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 110, 1261-1279 (2009). [CrossRef]
  19. A. Macke and M. I. Mishchenko, “Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles,” Appl. Opt. 35, 4291-4296 (1996). [CrossRef]
  20. F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?,” J. Opt. Soc. Am. A 19, 521-531 (2002). [CrossRef]
  21. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike troposheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831-16847 (1997). [CrossRef]
  22. O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 014506 (2002). [CrossRef]
  23. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006). [CrossRef]
  24. P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust particles,” J. Aerosol. Sci. 38, 995-1014(2007). [CrossRef]
  25. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114-126 (2009). [CrossRef]
  26. A. A. Kokhanovsky, “Optical properties of irregularly shaped particles,” J. Appl. Phys. D 36, 915-923 (2003). [CrossRef]
  27. O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and W.-H. Li, “Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes,” J. Geophys. Res. 110, D18S14(2005). [CrossRef]
  28. P. Chylek, G. W. Grams, and R. G. Pinnick, “Light scattering by irregular randomly oriented particles,” Science 193, 480-482 (1976). [CrossRef]
  29. J. B. Pollack and J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868-881 (1980). [CrossRef]
  30. P. Drossart, “A statistical model for the scattering by irregular particles,” Astrophys. J. 361, L29-L32 (1990). [CrossRef]
  31. T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999). [CrossRef]
  32. B. Veihelmann, “Sunlight on atmospheric water vapor and mineral aerosol: modeling the link between laboratory data and remote sensing,” Ph.D. thesis (Radboud University Nijmegen, 2005).
  33. P. Yang, K. N. Liou, M. I. Mishchenko, and B.-C. Gao, “Efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727-3737 (2000). [CrossRef]
  34. A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996). [CrossRef]
  35. M. I. Mishchenko, L. D. Travis, and A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927-4940 (1996). [CrossRef]
  36. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780-2788 (1993). [CrossRef]
  37. P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1159-1169 (2003).
  38. Z. Zhang, P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, “Geometrical-optics solution to light scattering by droxtal ice crystals,” Appl. Opt. 43, 2490-2499 (2004). [CrossRef]
  39. Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single-scattering properties of platonic solids in geometrical-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595-603 (2007). [CrossRef]
  40. P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805-812 (1965). [CrossRef]
  41. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535-575 (1996). [CrossRef]
  42. A. Doicu, Y. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, 2000).
  43. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973). [CrossRef]
  44. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988). [CrossRef]
  45. G. H. Goedecke and S. G. O'Brien, “Scattering by irregular inhomogeneous particles via the digitized Green's function algorithm,” Appl. Opt. 27, 2431-2438 (1988). [CrossRef]
  46. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007). [CrossRef]
  47. S. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  48. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072-2085(1996). [CrossRef]
  49. W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions,” Appl. Opt. 38, 3141-3151 (1999). [CrossRef]
  50. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568-6584 (1996). [CrossRef]
  51. K. Muinonen, “Scattering of light by crystals: a modified Kirchhoff approximation,” Appl. Opt. 28, 3044-3050 (1989). [CrossRef]
  52. P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223-248 (1998).
  53. E. W. Weisstein, “Hexahedron,” from MathWorld--A Wolfram Web Resource, http://mathworld.wolfram.com/Hexahedron.html
  54. J. S. Foot, “Some observations of the optical properties of clouds: II. Cirrus,” Q. J. R. Meteorol. Soc. 114, 145-164(1988). [CrossRef]
  55. E. S. Fry, J. Musser, G. W. Kattawar, and P. Zhai, “Integrating cavities: temporal response,” Appl. Opt. 45, 9053-9065 (2006). [CrossRef]
  56. G. Hong, P. Yang, F. Z. Weng, and Q. H. Liu, “Microwave scattering properties of sand particles: application to the simulation of microwave radiances over sandstorms,” J. Quant. Spectrosc. Radiat. Transfer 109, 684-702(2008). [CrossRef]
  57. W. Gordon, “Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields,” IEEE Trans. Antennas Propag. 23, 590-592 (1975). [CrossRef]
  58. K. N. Liou, Q. Cai, J. B. Pollack, and J. N. Cuzzi, “Light scattering by randomly oriented cubes and parallelepipeds,” Appl. Opt. 22, 3001-3008 (1983). [CrossRef]
  59. T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer 101, 471-484 (2006). [CrossRef]
  60. O. V. Kalashnikova and R. A. Kahn, “Mineral dust plume evolution over the Atlantic from combined MISR/MODIS aerosol retrievals,” J. Geophys. Res. 113, D24204 (2008). [CrossRef]
  61. Y. Liu, P. Koutrakis, and R. Kahn, “Estimating fine particulate mattercomponent concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 1--method development,” J. Air Waste Manage. Assoc. 57, 1351-1359 (2007).
  62. Y. Liu, P. Koutrakis, R. Kahn, S. Turquety, and R. M. Yantosca, “Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2--a case study,” J. Air Waste Manage. Assoc. 57, 1360-1369 (2007).
  63. M. Hess, R. B. A. Koelemeijer, and P. Stamnes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301-308 (1998). [CrossRef]
  64. Q. Fu, T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang, “Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations,” J. Quant. Spectrosc. Radiat. Transfer 110, 1640-1653 (2009). [CrossRef]
  65. M. Z. Jacobson, “A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols,” Geophys. Res. Lett. 27, 217-220 (2000). [CrossRef]
  66. S. Otto, E. Bierwirth, and B. Weinzierl, “Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles,” Tellus B 61, 270-296(2009). [CrossRef]
  67. M. Kahnert, A. Kylling, “Radiance and flux simulations for mineral dust aerosols: assessing the error due to using spherical or spheroidal model particles,” J. Geophys. Res. 109, D09203 (2004). [CrossRef]
  68. C. Pilinis and X. Li, “Particle shape and internal inhomogeneity effects in the optical properties of tropospheric aerosols of relevance to climate forcing,” J. Geophys. Res. 103, 3789-3800 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited