OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 3 — Jan. 20, 2010
  • pp: 369–381

Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm

ZhongPing Lee, Robert Arnone, Chuanmin Hu, P. Jeremy Werdell, and Bertrand Lubac  »View Author Affiliations

Applied Optics, Vol. 49, Issue 3, pp. 369-381 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1338 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Following the theory of error propagation, we developed analytical functions to illustrate and evaluate the uncertainties of inherent optical properties (IOPs) derived by the quasi-analytical algorithm (QAA). In particular, we evaluated the effects of uncertainties of these optical parameters on the inverted IOPs: the absorption coefficient at the reference wavelength, the extrapolation of particle backscattering coefficient, and the spectral ratios of absorption coefficients of phytoplankton and detritus/gelbstoff, respectively. With a systematically simulated data set (46,200 points), we found that the relative uncertainty of QAA-derived total absorption coefficients in the blue-green wavelengths is generally within ± 10 % for oceanic waters. The results of this study not only establish theoretical bases to evaluate and understand the effects of the various variables on IOPs derived from remote-sensing reflectance, but also lay the groundwork to analytically estimate uncertainties of these IOPs for each pixel. These are required and important steps for the generation of quality maps of IOP products derived from satellite ocean color remote sensing.

© 2010 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: July 16, 2009
Revised Manuscript: October 30, 2009
Manuscript Accepted: November 24, 2009
Published: January 13, 2010

ZhongPing Lee, Robert Arnone, Chuanmin Hu, P. Jeremy Werdell, and Bertrand Lubac, "Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm," Appl. Opt. 49, 369-381 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. International Ocean-Colour Coordinating Group, “Why ocean colour? The societal benefits of ocean-colour technology,” in Reports of the International Ocean-Colour Coordinating Group, No. 7, T. Platt, N. Hoepffner, V. Stuart, and C. Brown, eds. (IOCCG, 2008).
  2. International Ocean-Colour Coordinating Group, “Minimum requirements for an operational ocean-color sensor for the open ocean,” in Reports of the International Ocean-Color Coordinating Group, No. 1, A. Morel, ed. (IOCCG, 1998).
  3. International Ocean-Colour Coordinating Group, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” in Reports of the International Ocean-Colour Coordinating Group, No.3, S. Sathyendranath, ed. (IOCCG, 2000).
  4. E. S. Boss and S. Maritorena, “Uncertainties in the products of ocean-colour remote sensing,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z. -P.Lee, ed. (IOCCG, 2006). [PubMed]
  5. M. Chami and M. Defoin-Platel, “How ambiguous is the inverse problem of ocean color in coastal waters?,” J. Geophys. Res. 112, C03004 (2007). [CrossRef]
  6. M. S. Salama and A. Stein, “Error decomposition and estimation of inherent optical properties,” Appl. Opt. 48, 4947-4962(2009). [CrossRef] [PubMed]
  7. D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Becu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008). [CrossRef]
  8. J. O'Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998). [CrossRef]
  9. T. S. Moore, J. W. Campbell, and M. D. Dowell, “A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product,” Remote Sens. Environ. 113, 2424-2430 (2009). [CrossRef]
  10. T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613-1620 (1988). [CrossRef] [PubMed]
  11. M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem, Cycles 19, GB1006 (2005). [CrossRef]
  12. C. Hu, F. E. Muller-Kager, G. A. Vargo, M. B. Neely, and E. Johns, “Linkages between coastal runoff and the Florida Keys ecosystem: a study of a dark plume event,” Geophys. Res. Lett. 31, L15307 (2004). [CrossRef]
  13. Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007). [CrossRef]
  14. M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res. 112, C06003 (2007). [CrossRef]
  15. G. Chang and A. L. Whitmire, “Effects of bulk particle characteristics on backscattering and optical closure,” Opt. Express 17, 2132-2142 (2009). [CrossRef] [PubMed]
  16. W. W. Gregg and M. E. Conkright, “Decadal changes in global ocean chlorophyll,” Geophys. Res. Lett. 29, 1730 (2002). [CrossRef]
  17. C. R. McClain, R. A. Barnes, J. R. E. Eplee, B. A. Franz, N. C. Hsu, F. S. Patt, C. M. Pietras, W. D. Robinson, B. D. Schieber, G. M. Schmidt, M. Wang, S. W. Bailey, and P. J. Werdell, “SeaWiFS postlaunch calibration and validation analyses, Part 2,” NASA Tech. Memo. 2000-206892, S.B.Hooker, and E.R.Firestone, eds. (NASA Goddard Space Flight Center, 2000), Vol. 10, p. 57.
  18. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33, 443-452 (1994). [CrossRef] [PubMed]
  19. International Ocean-Colour Coordinating Group, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z. -P.Lee, ed. (IOCCG, 2006), p. 126.
  20. P. Wang, E. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semi-analytical inversions of ocean color,” Appl. Opt. 44, 4074-4085 (2005). [CrossRef] [PubMed]
  21. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44, 241-248(2005). [CrossRef] [PubMed]
  22. F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631-16648 (1996). [CrossRef]
  23. Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772(2002). [CrossRef] [PubMed]
  24. S. L. Meyer, Data Analysis for Scientists and Engineers (Wiley, 1975).
  25. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983), p. 44.
  26. R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z. -P.Lee, ed. (IOCCG, 2006). [PubMed]
  27. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002). [CrossRef] [PubMed]
  28. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999). [CrossRef]
  29. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924(1988). [CrossRef]
  30. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338(1998). [CrossRef]
  31. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters (2): Bi-directional aspects,” Appl. Opt. 32, 6864-6879 (1993). [CrossRef] [PubMed]
  32. J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135-13142 (1995). [CrossRef]
  33. R. Pope and E. Fry, “Absorption spectrum (380-700 nm) of pure waters: II. Integrating cavity measurements,” Appl. Opt. 36, 8710-8723 (1997). [CrossRef]
  34. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177-184 (1981). [CrossRef] [PubMed]
  35. H. R. Gordon, “Radiometric considerations for ocean color remote sensors,” Appl. Opt. 29, 3228-3236 (1990). [CrossRef] [PubMed]
  36. C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239-249 (2001). [CrossRef]
  37. G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Oceanic Technol. 19, 808-819 (2002). [CrossRef]
  38. P. J. Werdell and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122-140 (2005). [CrossRef]
  39. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1-24.
  40. C. D. Mobley, Hydrolight 3.0 Users' Guide (SRI International, 1995).
  41. Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004). [CrossRef] [PubMed]
  42. Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5, 495-507 (2008). [CrossRef]
  43. A. Morel, B. Gentili, H. Claustre, A. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the "clearest" natural waters,” Limnol. Oceanogr. 52, 217-229 (2007). [CrossRef]
  44. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698-5710 (2009). [CrossRef] [PubMed]
  45. M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosciences 4, 1041-1058(2007). [CrossRef]
  46. H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006). [CrossRef]
  47. S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373-1394 (1989). [CrossRef]
  48. H. R. Gordon and W. R. Mcluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413-416 (1975). [CrossRef] [PubMed]
  49. K. L. Carder, R. G. Steward, G. R. Harvey, and P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68-81(1989). [CrossRef]
  50. L. Guo, P. H. Santschi, and K. W. Warnken, “Dynamics of dissolved organic carbon (DOC) in oceanic environments,” Limnol. Oceanogr. 40, 1392-1403 (1995). [CrossRef]
  51. H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanogr. 34, 1389-1409 (1989). [CrossRef]
  52. Z. P. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005). [CrossRef]
  53. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995). [CrossRef]
  54. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981). [CrossRef]
  55. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510-1523 (1989). [CrossRef]
  56. M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88(2004). [CrossRef]
  57. M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O'Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall'Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779-794 (2009). [CrossRef]
  58. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163-7180 (2001). [CrossRef]
  59. J. R. V. Zaneveld., A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052-9061 (2005). [CrossRef] [PubMed]
  60. Y.-J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44, 1236-1249 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited