OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 3 — Jan. 20, 2010
  • pp: 457–462

Strategy for cryptanalysis of optical encryption in the Fresnel domain

Guohai Situ, Giancarlo Pedrini, and Wolfgang Osten  »View Author Affiliations


Applied Optics, Vol. 49, Issue 3, pp. 457-462 (2010)
http://dx.doi.org/10.1364/AO.49.000457


View Full Text Article

Enhanced HTML    Acrobat PDF (922 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Traditionally, cryptanalysis of optical security systems attempts to find original keys. Usually, by use of this kind of method, one can find a set of keys located close to the original keys in the key space. We call such a set the region of original key (ROK). For an optical encryption system in the Fresnel domain, such a strategy is ineffective since it needs to perform an exhaustive search to determine the system geometry or to solve an extremely large set of system equations. We propose to employ an alternative search strategy: to find a region of possible key (RPK). Since there is only one ROK for a cypher system but there are many RPKs, the probability to find a key in the RPK would be higher than in the ROK. Our analysis reveals that even a Fresnel-based encryption system has larger key space, but there are also serious security problems to be resolved.

© 2010 Optical Society of America

OCIS Codes
(070.4560) Fourier optics and signal processing : Data processing by optical means
(100.5070) Image processing : Phase retrieval
(200.3050) Optics in computing : Information processing

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: October 14, 2009
Manuscript Accepted: December 14, 2009
Published: January 15, 2010

Citation
Guohai Situ, Giancarlo Pedrini, and Wolfgang Osten, "Strategy for cryptanalysis of optical encryption in the Fresnel domain," Appl. Opt. 49, 457-462 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-3-457


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Schneier, Applied Cryptography: Protocols, Algorthms, and Source Code in C, 2nd ed. (Wiley, 1996).
  2. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30, 1644-1646 (2005). [CrossRef] [PubMed]
  3. U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T. Sheridan, “A known-plaintext heuristic attack on the Fourier plane encryption algorithm,” Opt. Express 14, 3181-3186 (2006). [CrossRef] [PubMed]
  4. X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044-1046 (2006). [CrossRef] [PubMed]
  5. X. Peng, H. Wei, and P. Zhang, “Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain,” Opt. Lett. 31, 3261-3263 (2006). [CrossRef] [PubMed]
  6. G. Situ, U. Gopinathan, D. S. Monaghan, and J. T. Sheridan, “Cryptanalysis of optical security systems with significant output images,” Appl. Opt. 46, 5257-5262 (2007). [CrossRef] [PubMed]
  7. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15, 10253-10265 (2007). [CrossRef] [PubMed]
  8. D. S. Monaghan, G. Situ, U. Gopinathan, T. J. Naughton, and J. T. Sheridan, “Role of phase key in the double random phase encoding technique: an error analysis,” Appl. Opt. 47, 3808-3816 (2008). [CrossRef] [PubMed]
  9. G. Situ, D. S. Monaghan, T. J. Naughton, J. T. Sheridan, G. Pedrini and W. Osten, “Collision in double random phase encoding,” Opt. Commun. 281, 5122-5125 (2008). [CrossRef]
  10. B. Javidi, ed. Optical and Digital Techniques for Information Security (Springer Verlag, 2005). [CrossRef]
  11. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767-769 (1995). [CrossRef] [PubMed]
  12. B. M. Hennelly and J. T. Sheridan, “Image encryption and the fractional Fourier transform,” Optik (Jena) 114, 251-265(2003). [CrossRef]
  13. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensioal keys in the Fresnel domain,” Opt. Lett. 24, 762-764 (1999). [CrossRef]
  14. G. Situ and J. Zhang, “A lensless optical security system based on computer-generated phase only masks,” Opt. Commun. 232, 115-122 (2004). [CrossRef]
  15. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29, 1584-1586 (2004). [CrossRef] [PubMed]
  16. B. M. Hennelly and J. T. Sheridan, “Random phase and jigsaw encryption in the Fresnel domain,” Opt. Eng. 43, 2239-2249 (2004). [CrossRef]
  17. H. -Y Tu, J. -S Chiang, J. -W Chou, and C. -J Cheng, “Full phase encoding for digital holographic encryption using liquid crystal spatial light modulators,” Jpn. J. Appl. Phys. 47, 8838-8843 (2008). [CrossRef]
  18. C. Cuadrado-Laborde, “Time-variant signal encryption by lensless dual random phase encoding applied to fiber optic links,” Opt. Lett. 32, 2867-2869 (2007). [CrossRef] [PubMed]
  19. C. Cuadrado-Laborde, R. Duchowicz, R. Torroba, and E. E. Sicre, “Dual random phase encoding: a temporal approach for fiber optic applications,” Appl. Opt. 47, 1940-1946 (2008). [CrossRef] [PubMed]
  20. A. M. Youssef, “On the security of a cryptosystem based on multiple-parameters discrete fractional Fourier transform,” IEEE Signal Process. Lett. 15, 77-78 (2008). [CrossRef]
  21. W. Qin and X. Peng, “Vulnerability to known-plaintext attack of optical encryption schemes based on two fractional Fourier transform order keys and double random phase keys,” J. Opt. A: Pure Appl. Opt. 11, 075402 (2009). [CrossRef]
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  23. B. Wang, C. -C Sun, W. -C Su, and A. E. T. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Opt. 39, 4788-4793 (2000). [CrossRef]
  24. Z. Zalevsky and R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21, 842-844 (1996). [CrossRef] [PubMed]
  25. F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007). [CrossRef]
  26. A. Levi and H. Stark, “Image restoration by the method of generalized projections with application to restoration from magnitude,” J. Opt. Soc. Am. A 1, 932-943 (1984). [CrossRef]
  27. http://sipi.usc.edu/database/
  28. D. S. Monaghan, U. Gopinathan, T. J. Naughton, and J. T. Sheridan, “Key-space analysis of double random phase encryption technique,” Appl. Opt. 46, 6641-6647 (2007). [CrossRef] [PubMed]
  29. P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,” Opt. Lett. 19, 1388-1390 (1994). [CrossRef] [PubMed]
  30. B. Javidi, G. Zhang, and J. Li, “Experimental demonstration of the random phase encoding technique for image encryption and security verification,” Opt. Eng. 35, 2506-2512 (1996). [CrossRef]
  31. D. S. Monaghan, U. Gopinathan, D. P. Kelly, T. J. Naughton, and J. T. Sheridan, “Systematic errors of an optical encryption system due to the discrete values of a spatial light modulator,” Opt. Eng. 48, 027001 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited