OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 3 — Jan. 20, 2010
  • pp: 463–470

Blue surface-emitting distributed feedback lasers based on TPD-doped films

Eva M. Calzado, Jose M. Villalvilla, Pedro G. Boj, Jose A. Quintana, Pablo A. Postigo, and María A. Díaz-García  »View Author Affiliations


Applied Optics, Vol. 49, Issue 3, pp. 463-470 (2010)
http://dx.doi.org/10.1364/AO.49.000463


View Full Text Article

Enhanced HTML    Acrobat PDF (722 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-mode second-order distributed feedback (DFB) lasers with low threshold, based on polystyrene films doped with 30   wt . % of the hole-transporting organic molecule N, N -bis (3-methylphenyl)-N, N - diphenylbenzidine (TPD) are reported. The laser emission wavelength was tuned between 415 and 427 nm by film thickness variation. The effectiveness of the DFB grating in improving the laser performance is evidenced by the observation of linewidths and laser thresholds lower than those of the amplified spontaneous emission characteristics shown by films without gratings. The use of holographic lithography as the technique for grating recording has allowed us to prepare large samples in a fast, versatile, and simple manner.

© 2010 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.2050) Lasers and laser optics : Dye lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.0160) Materials : Materials
(160.3380) Materials : Laser materials
(160.4890) Materials : Organic materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 28, 2009
Manuscript Accepted: November 24, 2009
Published: January 15, 2010

Citation
Eva M. Calzado, Jose M. Villalvilla, Pedro G. Boj, Jose A. Quintana, Pablo A. Postigo, and María A. Díaz-García, "Blue surface-emitting distributed feedback lasers based on TPD-doped films," Appl. Opt. 49, 463-470 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-3-463


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymers and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256, 424-430 (1996). [CrossRef]
  2. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273, 1833-1836 (1996). [CrossRef]
  3. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382, 695-697 (1996). [CrossRef]
  4. M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12, 1655-1668 (2000) and references therein. [CrossRef]
  5. N. Tessler, “Lasers based on semiconducting organic materials,” Adv. Mater. 11, 363-370 (1999) and references therein. [CrossRef]
  6. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107, 1272-1295 (2007) and references therein. [CrossRef] [PubMed]
  7. F. J. Duarte and L. W. Hillman, eds., Dye Laser Principles with Applications (Academic, 1990).
  8. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristic of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82, 313-315(2003). [CrossRef]
  9. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye laser,” Opt. Express 15, 3962-3967 (2007). [CrossRef] [PubMed]
  10. A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91, 051124 (2007). [CrossRef]
  11. M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58, 7035-7039 (1998). [CrossRef]
  12. M. A. Díaz-García, S. Fernández De Avila, and M. G. Kuzyk. “Dye-doped polymers for blue organic diode lasers,” Appl. Phys. Lett. 80, 4486-4488 (2002). [CrossRef]
  13. M. A. Díaz-García, E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, F. Giacalone, J. L. Segura, and N. Martín, “Concentration dependence of amplified spontaneous emission in two oligo-(p-phenylenevinylene),” J. Appl. Phys. 97, 063522(2005). [CrossRef]
  14. E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, R. Gómez, J. L. Segura, and M. A. Díaz-García, “Amplified spontaneous emission in polymer films doped with a perylenediimide derivative,” Appl. Opt. 46, 3836-3842 (2007). [CrossRef] [PubMed]
  15. E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, R. Gómez, J. L. Segura, and M. A. Díaz-García, “Effect of structural modifications in the spectral and laser properties of perylenediimide derivatives,” J. Phys. Chem. C 111, 13595(2007). [CrossRef]
  16. G. Gigli, G. Barbarella, L. Favaretto, F. Cacialli, and R. Cingolani, “High-efficiency oligothiopene-based light-emitting diodes,” Appl. Phys. Lett. 75, 439-441 (1999). [CrossRef]
  17. N. Johansson, J. Salbeck, J. Bauer, F. Weissörtel, P. Bröms, A. Andersson, and W. R. Salaneck, “Solid-state amplified spontaneous emission in some spiro-type molecules: A new concept for the design of solid-state lasing molecules,” Adv. Mater. 10, 1137 (1998). [CrossRef]
  18. S. Lattante, M. Anni, M. Salerno, L. Lagonigro, R. Cingolani, G. Gigli, M. Pasini, S. Destri, and W. Porzio, “Optical gain in fluorenyl-thiophene co-oligomer thin films,” Opt. Mater. 28, 1072-1075 (2006). [CrossRef]
  19. S. Lattante, M. De Giorgi, G. Barbarella, and L. Favaretto, “Interplay between stimulated emission and singlet-singlet annihilation in oligothiophene dioxide thin films,” J. Appl. Phys. 100, 023530 (2006). [CrossRef]
  20. J. Thomson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, and R. Cingolani, “Amplified spontaneous emission in the near infrared from a dye-doped polymer thin film,” Synth. Met. 143, 305-307 (2004). [CrossRef]
  21. T. Maillou, J. Le Moigne, V. Dumarcher, L. Rocha, B. Geffroy, and J.-M. Nunzi, “Oligo (phenyl-ethynylene) as high photoluminescence quantum yield materials and its distributed feedback (DFB) laser emission properties in thin films,” Adv. Mater. 14, 1297-1301 (2002). [CrossRef]
  22. X. Zhu, D. Gindre, N. Mercier, P. Frère, and J.-M. Nunzi, “Amplified stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer,” Adv. Mater. 15, 906-909 (2003). [CrossRef]
  23. A. Costela, I. García-Moreno, and R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745-4763 (2003). [CrossRef]
  24. W. Holzer, A. Penzkofer, and H.-H. Hörhold, “Travelling-wave lasing of TPD solutions and neat films,” Synth. Met. 113, 281-287 (2000). [CrossRef]
  25. M. A. Díaz-García, E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, and M. G. Kuzyk, “TPD-based blue organic lasers,” J. Nonlinear Opt. Phys. Mater. 13, 621 (2004). [CrossRef]
  26. E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, and M. A. Díaz-García, “Tuneability of amplified spontaneous emission through control of the thickness in organic-based waveguides,” J. Appl. Phys. 97, 093103 (2005). [CrossRef]
  27. E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, and M. A. Díaz-García, “Concentration dependence of amplified spontaneous emission in organic-based waveguides,” Org. Electron. 7, 319 (2006). [CrossRef]
  28. K. Bando, T. Nakamura, and Y. Masumoto, “Origin of the amplified spontaneous emission from thiophene/phenylene co-oligomer single crystals: towards co-oligomers lasers,” J. Appl. Phys. 99, 013518-013521 (2006). [CrossRef]
  29. W. Xie, Y. Li, F. Li, F. Shen, and Y. Ma, “Amplified spontaneous emission from cyano-substituted oligo (p-phenylene vinylene) single crystal with very high photoluminescence efficiency,” Appl. Phys. Lett. 90, 141110 (2007). [CrossRef]
  30. J. C. Ribierre, G. Tsiminis, S. Richardson, G. A. Turnbull, I. D. W. Samuel, H. S. Barcena, and P. L. Burn, “Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers,” Appl. Phys. Lett. 91, 081108 (2007). [CrossRef]
  31. R. Xia, G. Heilotis, Y. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron. 4, 165-177 (2003). [CrossRef]
  32. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley1995).
  33. M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback laser,” Appl. Phys. Lett. 72, 1536-1538(1998). [CrossRef]
  34. G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristic of a polymer distributed feedback laser,” Phys. Rev. B 64, 125122 (2001). [CrossRef]
  35. J. A. Quintana, P. G. Boj, J. Crespo, J. A. Vallés-Abarca, and J. M. Villalvilla, “Diffraction gratings in dry developed dichromated gelatin films,” Thin Solid Films 317, 343-346 (1998). [CrossRef]
  36. J. M. Villalvilla, J. Crespo, J. A. Quintana, C. Santos, and J. A. Vallés-Abarca, “Oxygen ECR stream etching of dichromated gelatin films,” Thin Solid Films 317, 340-342 (1998). [CrossRef]
  37. V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A Pure Appl. Opt. 2, 279-283 (2000). [CrossRef]
  38. G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14, 91-97 (2004). [CrossRef]
  39. H. Kogelnik and C. V. Shank, “Couple-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327-2335 (1972). [CrossRef]
  40. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67, 165107 (2003). [CrossRef]
  41. G. Heliotis, R. Xia, and D. D. C. Bradley, “Blue, surface-emitting distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83, 2118-2121 (2003). [CrossRef]
  42. S. Riechel, U. Lemmer, J. Feldmann, T. Benstem, W. Kowalsky, U. Scherf, A. Gombert, and V. Wittwer, “Laser modes in organic solid-state distributed feedback lasers,” Appl. Phys. B. 71, 897-900 (2000).
  43. C. Bauer, H. Giessen, B. Schnabel, E. B. Kley, C. Schmitt, U. Scherf, and R. F. Mahrt, “A surface-emitting circular grating polymer laser,” Adv. Mater. 13, 1161-1164 (2001). [CrossRef]
  44. I. Silvestre, P. W. B. Marques, M. Valadares, and L. A. Cury, “Gain coefficient method for amplified spontaneous emission in thin waveguided film of a conjugated polymer,” Appl. Phys. Lett. 93, 163307 (2008). [CrossRef]
  45. N. Tsutsumi, T. Kawahira, and W. Sakai, “Semiconducting polyfluorenes as materials for solid-state polymer lasers across the visible spectrum,” Appl. Phys. Lett. 83, 2533-2535(2003). [CrossRef]
  46. R. Xia, G. Heliotis, and D. D. C. Bradley, “Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,” Synth. Met. 140, 117-120 (2004). [CrossRef]
  47. R. Xia, G. Heliotis, and D. D. C. Bradley, “Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum,” Appl. Phys. Lett. 82, 3599-3601 (2003). [CrossRef]
  48. V. Trabadelo, A. Juarros, A. Retolaza, M. G. Ramírez, V. Navarro-Fuster, J. M. Villalvilla, P. G. Boj, J. A. Quintana, and M. A. Díaz-García, “Highly photostable solid-state organic distributed feedback laser fabricated via thermal nanoimprint lithography,” Microelectron. Eng. , doi:10.1016/j.mee.2009.11.142 (in press). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited