OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 3 — Jan. 20, 2010
  • pp: 471–478

Content-addressable holographic data storage system for invariant pattern recognition of gray-scale images

Joby Joseph, Alpana Bhagatji, and Kehar Singh  »View Author Affiliations


Applied Optics, Vol. 49, Issue 3, pp. 471-478 (2010)
http://dx.doi.org/10.1364/AO.49.000471


View Full Text Article

Enhanced HTML    Acrobat PDF (1419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conventionally a holographic data storage system uses binary digital data as the input pages. We propose and demonstrate the use of a holographic data storage system for the purpose of invariant pattern recognition of gray-scale images. To improve the correlation accuracy for gray-scale images, we present a coding technique, phase Fourier transform (phase-FT) coding, to code a gray-scale image into a random and balanced digital binary image. In addition to the fact that a digital data page is obtained for incorporation into a holographic data storage system, this phase-FT coded image produces dc-free homogenized Fourier spectrum. This coded image can also be treated as an image for further processing, such as synthesis of distortion-invariant filters for invariant pattern recognition. A space-domain synthetic discriminant function (SDF) filter has been synthesized using these phase-FT coded images for rotation-invariant pattern recognition. Both simulation and experimental results are presented. The results show good correlation accuracy in comparison to correlation results obtained for SDF filter synthesized using the original gray-scale images themselves.

© 2010 Optical Society of America

OCIS Codes
(100.5760) Image processing : Rotation-invariant pattern recognition
(100.6740) Image processing : Synthetic discrimination functions
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:
Image Processing

History
Original Manuscript: August 24, 2009
Revised Manuscript: December 12, 2009
Manuscript Accepted: December 18, 2009
Published: January 15, 2010

Citation
Joby Joseph, Alpana Bhagatji, and Kehar Singh, "Content-addressable holographic data storage system for invariant pattern recognition of gray-scale images," Appl. Opt. 49, 471-478 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-3-471


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  2. G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, “Content-addressable data storage by use of volume holograms,” Appl. Opt. 38, 6779-6784 (1999). [CrossRef]
  3. F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, “Content-addressable holographic databases,” Proc. SPIE 4109, 177-188 (2000).
  4. R. John, J. Joseph, and K. Singh, “An input-data page modulation scheme for content-addressable holographic digital data storage,” Opt. Commun. 249, 387-395 (2005). [CrossRef]
  5. B. Das, J. Joseph, and K. Singh, “Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory,” Appl. Opt. 48, 55-63(2009). [CrossRef]
  6. E. Watanabe, Y. Ichikawa, R. Akiyama, and K. Kodate, “Ultrahigh-speed optical correlation system using holographic disc,” Jpn. J. Appl. Phy. 47, 5964-5967 (2008).
  7. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139-145 (1964). [CrossRef]
  8. G. W. Burr, “Holography for information storage and processing,” Proc. SPIE 5181, 70-84 (2003).
  9. G. Goldmann, “Recording of digital data masks in quasi Fourier holograms,” Optik (Jena) 34, 254-267 (1971).
  10. C. B. Burckhardt, “Use of random phase mask for recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695-700 (1970). [CrossRef]
  11. Y. Takeda, Y. Oshida, and Y. Miyamura, “Random phase shifters for Fourier transformed holograms,” Appl. Opt. 11, 818-822 (1972). [CrossRef]
  12. M. P. Bernal, G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, and M. Quintanilla, “Experimental study of the effects of a six-level phase mask on a digital holographic data storage system,” Appl. Opt. 37, 2094-2101 (1998). [CrossRef]
  13. R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, “Beam conditioning techniques for holographic recording systems,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259-269.
  14. L. Domjan, P. Koppa, G. Szarvas, and J. Remenyi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane homogenization in holographic data storage,” Optik (Jena) 113, 382-390 (2002). [CrossRef]
  15. J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374-6380 (2006). [CrossRef]
  16. F. T. S. Yu and S. Jutamulia, eds., Optical Pattern Recognition (Cambridge Univ. Press, 1998).
  17. B. Javidi, ed., Image Recognition and Classification; Algorithms, Systems, and Applications (Marcel Dekker, 2002).
  18. B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773-4801(1992). [CrossRef]
  19. B. V. K. Vijaya Kumar, A. Mahalanobis, and R. Juday, Correlation Pattern Recognition (Cambridge Univ. Press, 2005).
  20. W. Feng, Y. Yan, G. Jin, M. Wu, and Q. He, “Invariant performance of a volume holographic wavelet correlation processor,” Opt. Commun. 177, 141-148 (2000). [CrossRef]
  21. W. Tan, Q. Xue, Y. Yan, and G. Jin, “Rotation invariant pattern recognition with a volume holographic wavelet correlation processor,” Chin. Opt. Lett. 1, 74-77 (2003).
  22. L. Ding, Y. Yan, Q. Xue, and G. Jin, “Wavelet packet compression for volume holographic image recognition,” Opt. Commun. 216, 105-113 (2003). [CrossRef]
  23. Q. Ma, K. Ni, Q.-S. He, L.-C. Cao, and G.-F. Jin, “Fast associative filtering based on two-dimensional discrete Walsh transform by a volume holographic correlator,” Opt. Express 17, 838-843 (2009). [CrossRef]
  24. M. Duelli, A. R. Pourzand, N. Collings, and R. Dandliker, “Pure phase correlator with photorefractive filter memory,” Opt. Lett. 22, 87-89 (1997). [CrossRef]
  25. E. Watanabe, A. Naito, R. Akiyama, and K. Kodate, “Ultra-high-speed holographic optical correlation system using a new coding method for various images,” presented at the International Workshop on Holographic Memories, Irago, Aichi, Japan, 20-23 October 2008, p. 104.
  26. K. Ni, Z. Qu, L. Cao, P. Su, Q. He, and G. Jin, “Improving accuracy of multichannel volume holographic correlators by using a two-dimensional interleaving method,” Opt. Lett. 32, 2972-2974 (2007). [CrossRef]
  27. A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529-541 (1981). [CrossRef]
  28. A. W. Lohmann, D. Mendlovic, and G. Shabtay, “Significance of phase and amplitude in the Fourier domain,” J. Opt. Soc. Am. A 14, 2901-2904 (1997). [CrossRef]
  29. T. Alieva and M. L. Calvo, “Importance of the phase and amplitude in the fractional Fourier transform,” J. Opt. Soc. Am. A 20, 533-541 (2003). [CrossRef]
  30. R. H. T. Bates, “Uniqueness of solutions to two-dimensional Fourier phase problems for localized and positive images,” Comput. Vis. Graph. Image Process. 25, 205-217 (1984).
  31. M. H. Hayes, “The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform,” IEEE Trans. Acoust. Speech Signal Process. 30, 140-154(1982). [CrossRef]
  32. P. H. Gardenier, B. C. McCallum, and R. H. T. Bates, “Fourier transform magnitudes are unique pattern recognition templates,” Biol. Cybern. 54, 385-391 (1986). [CrossRef]
  33. D. Casasent and W. T. Chang, “Correlation synthetic discriminant functions,” Appl. Opt. 25, 2343-2350 (1986). [CrossRef]
  34. Z. Bahri and B. V. K. Vijaya Kumar, “Generalized synthetic discriminant functions,” J. Opt. Soc. Am. A 5, 562-571 (1988). [CrossRef]
  35. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  36. J.-S. Jang and D.-H. Shin, “Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage,” Opt. Lett. 26, 1797-1799 (2001). [CrossRef]
  37. R. John, J. Joseph, and K. Singh, “Phase-image based content-addressable holographic data storage,” Opt. Commun. 232, 99-106 (2004). [CrossRef]
  38. R. John, J. Joseph, and K. Singh, “Holographic digital data storage using phase-modulated pixels,” Opt. Lasers Eng. 43, 183-194 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited