OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 3 — Jan. 20, 2010
  • pp: 497–504

Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy

Shihong Jiang and John Walker  »View Author Affiliations

Applied Optics, Vol. 49, Issue 3, pp. 497-504 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (927 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a differential fluorescence speckle confocal microscope that acquires an image in a fraction of a second by exploiting the very high frame rate of modern digital micromirror devices (DMDs). The DMD projects a sequence of predefined binary speckle patterns to the sample and modulates the intensity of the returning fluorescent light simultaneously. The fluorescent light reflecting from the DMD’s “on” and “off” pixels is modulated by correlated speckle and anticorrelated speckle, respectively, to form two images on two CCD cameras in parallel. The sum of the two images recovers a widefield image, but their difference gives a near-confocal image in real time. Experimental results for both low and high numerical apertures are shown.

© 2010 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.2990) Imaging systems : Image formation theory
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:

Original Manuscript: August 25, 2009
Revised Manuscript: December 23, 2009
Manuscript Accepted: January 5, 2010
Published: January 19, 2010

Virtual Issues
Vol. 5, Iss. 3 Virtual Journal for Biomedical Optics

Shihong Jiang and John Walker, "Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy," Appl. Opt. 49, 497-504 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Waters, “Live-cell fluorescence imaging,” in Digital Microscopy, 3rd ed. (Elsevier, 2007), pp. 115-140. [CrossRef]
  2. A. T. Hammond and B. S. Glick, “Raising the speed limits for 4D fluorescence microscopy,” Traffic 1, 935-940 (2000). [CrossRef]
  3. D. Gerlich, J. Beaudouin, M. Gebhard, J. Ellenberg, and R. Eils, “Four-dimensional imaging and quantitative reconstruction to analyse complex spatiotemporal processes in live cells,” Nature Cell Biol. 3, 852-855 (2001). [CrossRef] [PubMed]
  4. M. H. Liang, R. L. Stehr, and A. W. Krause, “Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination,” Opt. Lett. 22, 751-753 (1997). [CrossRef] [PubMed]
  5. P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. Van Vliet, and T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. (Oxford) 189, 192-198 (1998). [CrossRef]
  6. T. Fukano and A. Miyawaki, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Appl. Opt. 42, 4119-4124 (2003). [CrossRef] [PubMed]
  7. C. H. Wong, N. G. Chen, and C. J. R. Sheppard, “Study on potential of structured illumination microscopy utilizing digital micromirror device for endoscopy purpose,” Proceedings of International Symposium on Biophotonics, Nanophotonics and Metamaterials (IEEE, 2006), pp. 214-217.
  8. G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope (PAM),” Proc. SPIE 6441, 64410S (2007). [CrossRef]
  9. V. Bansal, S. Patel, and P. Saggau, “High-speed addressable confocal microscopy for functional imaging of cellular activity,” J. Biomed. Opt. 11 (2006). [CrossRef] [PubMed]
  10. V. Bansal, S. Patel, and P. Saggau, “A high-speed confocal laser-scanning microscope based on acousto-optic deflectors and a digital micromirror device,” in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2003), Vols. 1- 4, pp. 2124-2127.
  11. J. G. Walker, “Non-scanning confocal fluorescence microscopy using speckle illumination,” Opt. Commun. 189, 221-226(2001). [CrossRef]
  12. S. H. Jiang and J. G. Walker, “Experimental confirmation of non-scanning fluorescence confocal microscopy using speckle illumination,” Opt. Commun. 238, 1-12 (2004). [CrossRef]
  13. S. Jiang and J. G. Walker, “Non-scanning fluorescence confocal microscopy using speckle illumination and optical data processing,” Opt. Commun. 256, 35-45 (2005). [CrossRef]
  14. S. H. Jiang and J. G. Walker, “Speckle-illuminated fluorescence confocal microscopy using a digital micro-mirror device,” Meas. Sci. Technol. 20, 065501 (2009). [CrossRef]
  15. C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett. 30, 3350-3352 (2005). [CrossRef]
  16. C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express 14, 7198-7209 (2006). [CrossRef] [PubMed]
  17. C. Ventalon, R. Heintzmann, and J. Mertz, “Dynamic speckle illumination microscopy with wavelet prefiltering,” Opt. Lett. 32, 1417-1419 (2007). [CrossRef] [PubMed]
  18. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33, 1819-1821 (2008). [CrossRef] [PubMed]
  19. S. Ri, M. Fujigaki, T. Matui, and Y. Morimoto, “Accurate pixel-to-pixel correspondence adjustment in a digital micromirror device camera by using the phase-shifting moire method,” Appl. Opt. 45, 6940-6946 (2006). [CrossRef] [PubMed]
  20. S. Jiang, “Non-scanning fluorescence confocal microscopy using laser speckle illumination,” Ph.D. thesis (University of Nottingham, 2005).
  21. ViALUX GmbH, product data sheet, Chemnitz, Germany (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited