OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 3 — Jan. 20, 2010
  • pp: 529–535

Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation

D. Ying, M. S. Demokan, X. Zhang, and W. Jin  »View Author Affiliations


Applied Optics, Vol. 49, Issue 3, pp. 529-535 (2010)
http://dx.doi.org/10.1364/AO.49.000529


View Full Text Article

Enhanced HTML    Acrobat PDF (593 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an in-depth analysis of the Kerr effect in resonator fiber optic gyros (R-FOGs) based on triangular wave phase modulation. Formulations that relate gyro output to the rotation rate, the Kerr nonlinearity, and other fiber and gyro parameters are derived and used to study the effect of Kerr nonlinearity on the gyro performance. Numerical investigation shows that the Kerr effect results in a nonzero gyro output even when the gyro is at stationary, which is interpreted as an error in the measurement of rotation rate. This error was found to increase as the frequencies of the two triangular phase modulations deviate from each other, and is not zero even if the intensities of the two counterpropagating beams are exactly the same. For fixed frequencies of the triangular phase modulations, there exists an optimal intensity splitting ratio for the two counterpropagating beams, which leads to zero gyro error. Calculation shows that the measurement error due to the Kerr effect for an R-FOG with a hollow-core photonic bandgap fiber as the fiber loop can be one to two orders of magnitude smaller than an R-FOG with a conventional single mode fiber loop.

© 2010 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2800) Fiber optics and optical communications : Gyroscopes

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 25, 2009
Revised Manuscript: November 23, 2009
Manuscript Accepted: November 27, 2009
Published: January 20, 2010

Citation
D. Ying, M. S. Demokan, X. Zhang, and W. Jin, "Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation," Appl. Opt. 49, 529-535 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-3-529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. W. Chow, J. Gea-Banaciloche, and L. M. Pedrotti, “The ring laser gyro,” Rev. Mod. Phys. 57, 61-103 (1985). [CrossRef]
  2. D. M. Shupe, “Fiber resonator gyroscope: sensitivity and thermal nonreciprocity,” Appl. Opt. 20, 286-289 (1981). [CrossRef]
  3. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Resonance characteristics of backscattering in optical passive-ring resonator gyro: experiment,” Appl. Opt. 25, 4448-4451 (1986). [CrossRef]
  4. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23, 3916-3924 (1984). [CrossRef]
  5. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. 4, 645-651 (1986). [CrossRef]
  6. K. Takiguchi and K. Hotate, “Method to reduce the optical Kerr-effect-induced bias in an optical passive ring-resonator gyro,” IEEE Photonics Technol. Lett. 4, 203-206 (1992). [CrossRef]
  7. K. Hotate and K. Tabe, “Drift of an optical fiber gyroscope caused by the Faraday effect: experiment,” J. Lightwave Technol. 5, 997-1001 (1987). [CrossRef]
  8. T. Ito and K. Hotate, “Closed-loop operation in the resonator fiber optic gyro using Faraday effect with a twisted single-mode-fiber resonator,” Proc. SPIE 2837, 260-271 (1996).
  9. K. Hotate and Y. Kikuchi, “Analysis of thermo-optically induced bias drift in resonator fiber optic gyro,” Proc. SPIE 4204, 81-88 (2001).
  10. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999). [CrossRef]
  11. G. A. Sanders, L. K. Strandjord, and T. C. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” in Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.
  12. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003).
  13. H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Air-core photonic-bandgap fiber-optic gyroscope,” J. Lightwave Technol. 24, 3169-3174 (2006). [CrossRef]
  14. Q. Yao, Y. Hu, Z. Song, and Y. Xie, “Study on Kerr-effect-induced bias reduction method for resonator fiber optic gyroscope,” Acta Photonica Sin. 34, 1320-1323 (2005).
  15. X. Yu, Y. Liao, M. Zhang, Y. Yu, and D. Li, “Kerr effect in an optical passive ring-resonator gyro using a hollow-core photonic band-gap fiber,” Chin. J. Lasers 35, 430-435 (2008). [CrossRef]
  16. D. Ying, H. Ma, and Z. Jin, “Resonator fiber optic gyro using the triangle wave phase modulation technique,” Opt. Commun. 281, 580-586 (2008). [CrossRef]
  17. Z. Jin, Z. Yang, H. Ma, and D. Ying, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photonics Technol. Lett. 19, 1685-1687(2007). [CrossRef]
  18. D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340-5343 (2008). [CrossRef]
  19. K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15, 466-473 (1997). [CrossRef]
  20. K. Hotate and G. Hayashi, “Resonator fiber optic gyro using digital serrodyne modulation-method to reduce the noise induced by the backscattering and closed-loop operation using digital signal processing,” Proc. SPIE 3746, 104-107 (1999).
  21. H. Ma, Z. Jin, C. Ding, and Y. Wang, “Influence of spectral linewidth of laser on resonance characteristics in fiber ring resonator,” Chin. J. Lasers 30, 731-734 (2003).
  22. Y. Ohtsuka, “Optical coherence effects on a fiber-sensing Fabry-Perot interferometer,” Appl. Opt. 21, 4316-4320 (1982). [CrossRef]
  23. X. Zhang, H. Ma, C. Ding, and Z. Jin, “Optical Kerr effect in phase modulation spectroscopy resonator fiber optic gyro,” Chin. J. Lasers 33, 814-818 (2006).
  24. H. Ma, Z. Jin, C. Ding, and Y. Wang, “Research on signal detection method of resonator fiber optical gyro,” Chin. J. Lasers 31, 1001-1005 (2004).
  25. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8, 644-646 (1983). [CrossRef]
  26. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited