OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 3 — Jan. 20, 2010
  • pp: 542–548

Infrared optical element mounting techniques for wide temperature ranges

Bortolino Saggin, Marco Tarabini, and Diego Scaccabarozzi  »View Author Affiliations


Applied Optics, Vol. 49, Issue 3, pp. 542-548 (2010)
http://dx.doi.org/10.1364/AO.49.000542


View Full Text Article

Enhanced HTML    Acrobat PDF (473 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the optimization of a mounting system for the infrared (IR) optics of a spaceborne inter ferometer working in the temperature range between 120 ° C and + 150 ° C . The concept is based on an aluminum alloy frame with designed mechanical compliance, which allows for compensation of the different coefficient of thermal expansion between the optics and the holder; at the same time, the system provides for the high stiffness required to reach natural frequencies above 200 Hz , which are mandatory in most space missions. Thermal adapters with properly chosen thermomechanical characteristics are interposed between the metallic structure and the lens, so as to reduce the interface stresses on the mechanically weak IR material, due to both the thermoelastic and acceleration loads. With the proposed mount, the competitive requirements of stiffness and stress-free mounting can be matched in wide temperature ranges. The case study of the interferometer of a miniaturized Fourier transform IR spectrometer is presented.

© 2010 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(220.4880) Optical design and fabrication : Optomechanics
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: November 4, 2009
Manuscript Accepted: December 11, 2009
Published: January 20, 2010

Citation
Bortolino Saggin, Marco Tarabini, and Diego Scaccabarozzi, "Infrared optical element mounting techniques for wide temperature ranges," Appl. Opt. 49, 542-548 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-3-542


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Chin, “Optical mirror-mount design and philosophy,” Appl. Opt. 3, 895-901 (1964). [CrossRef]
  2. G. Kroes, J. Kragt, R. Navarro, E. Elswijk, and H. Hanenburg, “Opto-mechanical design for transmission optics in cryogenic IR instrumentation,” Proc. SPIE 7018, 70182D (2008). [CrossRef]
  3. A. Ahmad, Optomechanical Engineering Handbook (CRC, 1999).
  4. D. Vukobratovich, K. A. Fetterhoff, J. R. Myers, P. D. Wheelwright, and G. R. Cunnington, “Bonded mounts for small cryogenic optics,” Proc. SPIE 4131, 228-239 (2000). [CrossRef]
  5. T. R. Froud, I. A. J. Tosh, R. L. Edeson, and G. B. Dalton, “Cryogenic mounts for large fused silica lenses,” Proc. SPIE 6273, 62732I (2006). [CrossRef]
  6. T. P. O'Brien and B. Atwood, “Lens mounting system for cryogenic applications,” Proc. SPIE 4841, 398-402 (2003). [CrossRef]
  7. E. T. Kvamme and M. Jacoby, “A second generation low stress cryogenic mount for space-borne lithium fluoride optics,” Proc. SPIE 6692, 66920I (2007). [CrossRef]
  8. C. L. Hom, H. C. Holmes, D. N. Lapicz, I. V. Chapman, E. T. Kvamme, and D. M. Stubbs, “Cryogenic bonding for lens mounts,” Proc. SPIE 7439, 743910 (2009). [CrossRef]
  9. E. D. Marquardt, J. P. Le, and Ray Radebaugh, “Cryogenic material properties database” in Proceedings of the 11th International Cryocooler Conference (Kluwer Academic/Plenum, 2000).
  10. C. S. Chen, J. P. Szczesniak, and J. C. Corelli, “Infrared stress birefringence in KBr, KCl, LiF, and ZnSe,” J. Appl. Phys. 46, 303 (1975). [CrossRef]
  11. G. Bellucci, B. Saggin, S. Fonti, D. Biondi, P. Cerulli, M. De Luca, F. Altieri, A. Mattana, E. Alberti, G. Marzo, and L. Zasova, “MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: part I. concept and expected performance,” Proc. SPIE 6744, 67441Q (2007). [CrossRef]
  12. S. Fonti, G. Marzo, R. Politi, G. Bellucci, and B. Saggin, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part II. Optical design,” Proc. SPIE 6744, 67441R (2007). [CrossRef]
  13. B. Saggin, E. Alberti, L. Comolli, M. Tarabini, G. Bellucci, and S. Fonti, “MIMA, a miniaturized infrared spectrometer for Mars ground exploration: part III. Thermomechanical design,” Proc. SPIE 6744, 67441S (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited