OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 30 — Oct. 20, 2010
  • pp: 5787–5798

Preferential-order waveguide grating couplers: a comparative rigorous analysis using the finite-difference time-domain method

Aristeides D. Papadopoulos and Elias N. Glytsis  »View Author Affiliations

Applied Optics, Vol. 49, Issue 30, pp. 5787-5798 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We rigorously analyze and compare preferential-order waveguide grating output couplers using the finite-difference time-domain method in the total-field/scattered-field formulation for TE and TM polarizations. Four kinds of preferential-order grating couplers are studied: volume holographic grating couplers, slanted parallelogrammic surface-relief grating couplers, double-corrugated surface-relief grating couplers, and reflecting-stack surface-relief grating couplers. The outcoupling efficiencies and branching ratios of the couplers, revealing their preferentiality, are calculated and compared with the rigorous coupled-wave analysis leaky-mode method. In addition, their performance is examined in terms of the main design parameters and the excitation wavelength.

© 2010 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(050.7330) Diffraction and gratings : Volume gratings
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Diffraction and Gratings

Original Manuscript: June 29, 2010
Revised Manuscript: September 14, 2010
Manuscript Accepted: September 14, 2010
Published: October 14, 2010

Aristeides D. Papadopoulos and Elias N. Glytsis, "Preferential-order waveguide grating couplers: a comparative rigorous analysis using the finite-difference time-domain method," Appl. Opt. 49, 5787-5798 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kogelnik and P. Sosnowski, “Holographic thin film couplers,” Bell. Syst. Tech. J. 49, 1602–1608 (1970).
  2. K. Ogawa and W. S. C. Chang, “Analysis of holographic thin film grating coupler,” Appl. Opt. 12, 2167–2171 (1973). [CrossRef] [PubMed]
  3. W. Y. Wang and T. J. DiLaura, “Bragg effect waveguide coupler analysis,” Appl. Opt. 16, 3230–3236 (1977). [CrossRef] [PubMed]
  4. W. Driemeier and A. Brockmeyer, “High-resolution photorefractive polymer for optical recording of waveguide gratings,” Appl. Opt. 25, 2960–2966 (1986). [CrossRef] [PubMed]
  5. W. Driemeier, “Bragg-effect grating couplers integrated in multicomponent polymeric waveguides,” Opt. Lett. 15, 725–727 (1990). [CrossRef] [PubMed]
  6. W. Driemeier, “Coupled-wave analysis of the Bragg effect waveguide coupler,” J. Mod. Opt. 38, 363–377 (1991). [CrossRef]
  7. S. M. Schultz and E. N. Glytsis, “Design, fabrication and performance of preferential-order volume waveguide couplers,” Appl. Opt. 39, 1223–1232 (2000). [CrossRef]
  8. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design of a high-efficiency volume grating coupler for line focusing,” Appl. Opt. 37, 2278–2287 (1998). [CrossRef]
  9. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Volume grating preferential-order focusing waveguide coupler,” Opt. Lett. 24, 1708–1710 (1999). [CrossRef]
  10. R. A. Villalaz, E. N. Glytsis, and T. K. Gaylord, “Volume grating couplers: polarization and loss effects,” Appl. Opt. 41, 5223–5229 (2002). [CrossRef] [PubMed]
  11. S.-D. Wu and E. N. Glytsis, “Volume holographic grating couplers: rigorous analysis by use of the finite-difference frequency-domain method,” Appl. Opt. 43, 1009–1023 (2004). [CrossRef] [PubMed]
  12. A. D. Papadopoulos and E. N. Glytsis, “Optical waveguide grating couplers: 2nd-order and 4th-order finite-difference time-domain analysis,” Appl. Opt. 48, 5164–5175 (2009). [CrossRef] [PubMed]
  13. S. T. Peng and T. Tamir, “Directional blazing of waves guided by asymmetrical dielectric gratings,” Opt. Commun. 11, 405–409 (1974). [CrossRef]
  14. W. Streifer, R. D. Burnham, and D. R. Scifres, “Analysis of grating-coupled radiatio in GaAs: GaAlAs lasers and waveguide-II: blazing effects,” IEEE J. Quantum Electron. 12, 494–499 (1976). [CrossRef]
  15. T. Aoyagi, Y. Aoyagi, and S. Namba, “High-efficiency blazed grating couplers,” Appl. Phys. Lett. 29, 303–304 (1976). [CrossRef]
  16. M. Matsumoto, “Analysis of the blazing effect in second order gratings,” IEEE J. Quantum Electron. 28, 2016–2023(1992). [CrossRef]
  17. M. Li and S. J. Sheard, “Waveguide couplers using parallelogramic-shaped blazed gratings,” Opt. Commun. 109, 239–245(1994). [CrossRef]
  18. M. Li and S. J. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profiles,” Opt. Eng. 35, 3101–3106 (1996). [CrossRef]
  19. T. Liao, S. Sheard, M. Li, J. Zhu, and P. Prewett, “High-efficiency focusing waveguide grating coupler parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997). [CrossRef]
  20. T. Liao and S. Sheard, “Integrated-optic array illuminator: a new design for guided-wave optical interconnections,” Appl. Opt. 37, 2729–2734 (1998). [CrossRef]
  21. J. M. Miller, N. Beaucoudrey, P. Chavel, J. Turunen, and E. Cambrill, “Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection,” Appl. Opt. 36, 5717–5727 (1997). [CrossRef] [PubMed]
  22. I. A. Avrutsky, A. S. Svakhin, and V. A. Sychugov, “Interference phenomena in waveguide with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989). [CrossRef]
  23. I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990). [CrossRef] [PubMed]
  24. J. C. Brazas, L. Li, and A. L. McKeon, “High-efficiency input coupling into optical waveguides using gratings with double-surface corrugation,” Appl. Opt. 34, 604–609 (1995). [CrossRef] [PubMed]
  25. R. L. Roncone, L. Li, K. A. Bates, J. J. Burke, L. Weisenbach, and B. J. J. Zelinski, “Design and fabrication of single-leakage-channel grating coupler,” Appl. Opt. 32, 4522–4528 (1993). [CrossRef] [PubMed]
  26. R. L. Roncone, L. Li, K. A. Bates, and J. C. Brazas, “Single-leakage-channel grating couplers: comparison of theoretical and experimental branching ratios,” Opt. Lett. 18, 1919–1921(1993). [CrossRef] [PubMed]
  27. N. Eriksson, M. Hagberg, and A. Larsson, “Highly directional grating outcouplers with tailored radiation characteristics,” IEEE J. Quantum Electron. 32, 1038–1047 (1996). [CrossRef]
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, 2005).
  29. H. Kogelnik, “Theory of optical waveguides,” in T.Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, 1988), pp. 7–88.
  30. L. Gurel and U. Oguz, “Signal-processing techniques to reduce the sinusoidal steady-state error in the FDTD method,” IEEE Trans. Microwave Theory Tech. 48, 334–338 (2000). [CrossRef]
  31. A. D. Papadopoulos and E. N. Glytsis, “Finite-difference-time-domain analysis of finite-number-of-periods holographic and surface-relief gratings,” Appl. Opt. 47, 1981–1994 (2008). [CrossRef] [PubMed]
  32. J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microwave Opt. Technol. Lett. 27, 334–339 (2000). [CrossRef]
  33. R. J. Luebbers and F. Hunsberger, “FDTD for Nth-order dispersive media,” IEEE Trans. Antennas Propag. 40, 1297–1301(1992). [CrossRef]
  34. M. Kuzuoglu and R. Mittra, “Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers,” IEEE Microwave Guided Wave Lett. 6, 447–449 (1996). [CrossRef]
  35. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996). [CrossRef]
  36. T. Jalali, K. Rauscher, A. Mohammadi, D. Erni, C. H. Hafner, W. Baechtold, and Z. M. Shoushtari, “Efficient effective permittivity treatment for the 2D-FDTD simulation of photonic crystals,” J. Comput. Theor. Nanosci. 4, 644–648 (2007). [CrossRef]
  37. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited