OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 30 — Oct. 20, 2010
  • pp: 5851–5860

Vision ray calibration for the quantitative geometric description of general imaging and projection optics in metrology

Thorsten Bothe, Wansong Li, Michael Schulte, Christoph von Kopylow, Ralf B. Bergmann, and Werner P. O. Jüptner  »View Author Affiliations


Applied Optics, Vol. 49, Issue 30, pp. 5851-5860 (2010)
http://dx.doi.org/10.1364/AO.49.005851


View Full Text Article

Enhanced HTML    Acrobat PDF (982 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Exact geometric calibration of optical devices like projectors or cameras is the basis for utilizing them in quantitative metrological applications. The common state-of-the-art photogrammetric pinhole-imaging-based models with supplemental polynomial corrections fail in the presence of nonsymmetric or high-spatial-frequency distortions and in describing caustics efficiently. These problems are solved by our vision ray calibration (VRC), which is proposed in this paper. The VRC takes an optical mapping system modeled as a black box and directly delivers corresponding vision rays for each mapped pixel. The underlying model, the calibration process, and examples are visualized and reviewed, demonstrating the potential of the VRC.

© 2010 Optical Society of America

OCIS Codes
(120.2830) Instrumentation, measurement, and metrology : Height measurements
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(150.6910) Machine vision : Three-dimensional sensing
(150.0155) Machine vision : Machine vision optics
(150.1488) Machine vision : Calibration
(150.3045) Machine vision : Industrial optical metrology

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 1, 2010
Revised Manuscript: August 13, 2010
Manuscript Accepted: September 2, 2010
Published: October 18, 2010

Citation
Thorsten Bothe, Wansong Li, Michael Schulte, Christoph von Kopylow, Ralf B. Bergmann, and Werner P. O. Jüptner, "Vision ray calibration for the quantitative geometric description of general imaging and projection optics in metrology," Appl. Opt. 49, 5851-5860 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-30-5851


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Savio, L. De Chiffre, and R. Schmitt, “Metrology of freeform shaped parts,” CIRP Ann. 56, 810–835 (2007). [CrossRef]
  2. K. Wolff, “Approximation of non projective mapping and their efficient application for a geometrically based 3D point determination using multiple views,” in Proceedings of Commission III ISPRS Congress Istanbul, 2004 (International Society for Photogrammetry and Remote Sensing, 2004), pp. 606–611.
  3. W. Li, M. Schulte, T. Bothe, C. von Kopylow, N. Köpp, and W. Jüptner, “Beam based calibration for optical imaging devices,” in Proceedings of the 3DTV Conference (IEEE, 2007), pp. 1–4.
  4. F. Remondino and C. Fraser, “Digital camera calibration methods: considerations and comparisons,” ISPRS Symp. 36, 266–272 (2006).
  5. O. Frank, R. Katz, C. Tisse, and H. Durrant-Whyte, “Camera calibration for miniature, low-cost, wide-angle imaging systems,” in Proceedings of the 18th British Machine Vision Conference (British Machine Vision Association, 2007). [CrossRef]
  6. M. Bauer, D. Griessbach, A. Hermerschmidt, S. Küger, M. Scheele, and A. Schischmanow, “Geometrical camera calibration with diffractive optical elements,” Opt. Express 16, 20241–20248 (2008). [CrossRef] [PubMed]
  7. G. Dai, “Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation,” Opt. Lett. 31, 501–503 (2006). [CrossRef] [PubMed]
  8. R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344 (1987). [CrossRef]
  9. R. Legarda-Saenz, T. Bothe, and W. P. Juptner, “Accurate procedure for the calibration of a structured light system,” Opt. Eng. 43, 464–471 (2004). [CrossRef]
  10. C. Bräuer-Burchardt, “Correcting lens distortion in 3D measuring systems using fringe projection,” Proc. SPIE 5962, 59620J (2005). [CrossRef]
  11. R. Swaminathan, M. D. Grossberg, and P. K. Nayar, “Non-single viewpoint catadioptric cameras: geometry and analysis,” Int. J. Comput. Vision 66, 211–229 (2006). [CrossRef]
  12. M. D. Grossberg and S. K. Nayar, “The raxel imaging model and ray-based calibration,” Int. J. Comput. Vision 61, 119–137 (2005). [CrossRef]
  13. J. Tardif, P. Sturm, and P. Roy, “Self-calibration of a general radially symmetric distortion model,” Lect. Notes Comput. Sci. 3954 , 186–199 (2006). 
  14. L. Ma, Y. Chen, and K. L. Moore, “An analytical piecewise radial distortion model for precision camera calibration,” IEE Proc. Vision Image Signal Process. 153, 468–474 (2006). [CrossRef]
  15. H. Louhichi, T. Fournel, J. M. Lavest, and H. Ben Aissia, “Self-calibration of Scheimpflug cameras: an easy protocol,” Meas. Sci. Technol. 18, 2616–2622 (2007). [CrossRef]
  16. J. Wang, F. Shi, J. Zhang, and Y. Liu, “A new calibration model of camera lens distortion,” Pattern Recogn. 41, 607–615 (2008). [CrossRef]
  17. J. Kannala and P. Brandt, “A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 1335–1340 (2006). [CrossRef] [PubMed]
  18. M. D. Grossberg and P. K. Nayar, “A general imaging model and a method for finding its parameters,” in Proceedings of the Eighth International Conference on Computer Vision, Vol.  2 (IEEE, 2001), pp. 108–115.
  19. J. Mallon and P. F. Whelan, “Which pattern? Biasing aspects of planar calibration patterns and detection methods,” Pattern Recogn. Lett. 28, 921–930 (2007). [CrossRef]
  20. P. Sturm and P. Ramalingam, “A generic concept for camera calibration,” in Proceedings of the European Conference on Computer Vision, Vol  2 (Springer, 2004), pp. 1–13.
  21. S. Ramalingam, P. Sturm, and P. K. Lodha, “Towards complete generic camera calibration,” in Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition, Vol.  1 (IEEE, 2005), pp. 1093–1098.
  22. R. Sagawa, M. Takatsuji, T. Echigo, and Y. Yagi, “Calibration of lens distortion by structured-light scanning,” in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2005), pp. 832–837. [CrossRef]
  23. R. Sagawa, T. Sakai, T. Echigo, K. Yagi, M. Shiba, K. Higuchi, T. Arakawa, and Y. Yagi, “Omnidirectional vision attachment for medical endoscopes,” in Proceedings of the Eighth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras , R.Swaminathan, V.Caglioti, and A.Argyros, eds. (2008), http://hal.inria.fr/inria-00325318. [PubMed]
  24. J. Barreto, J. Santos, P. Menezes, and F. Fonseca, “Ray-based calibration of rigid medical endoscopes,” in Proceedings of the Eighth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras, R.Swaminathan, V.Caglioti, and A.Argyros, eds. (2008), http://hal.inria.fr/inria-00325318. [PubMed]
  25. C. Bräuer-Burchardt, “The influence of target distance to lens distortion variation,” Proc. SPIE 6617, 661708 (2007). [CrossRef]
  26. A. K. Dunne, J. Mallon, and P. F. Whelan, “Efficient generic calibration method for general cameras with single centre of projection,” in Proceedings of the 11th International Conference on Computer Vision (IEEE, 2007), pp. 1–8.
  27. A. K. Dunne, J. Mallon, and P. F. Whelan, “Efficient generic calibration method for general cameras with single centre of projection,” Comput. Vision Image Understand. 114, 220–233(2010). [CrossRef]
  28. T. Bothe, A. Gesierich, W. Li, and M. Schulte, “Verfahren und vorrichtung zur kalibrierung einer optischen einrichtung,” German patent DE 10 2005 061 931 A1 (not-yet granted), BIAS (2005).
  29. J. Burke, T. Bothe, W. Osten, and C. F. Hess, “Reverse engineering by fringe projection,” Proc. SPIE 4778, 312–324 (2002). [CrossRef]
  30. B. Schäfer, “Wavefront analysis: theory and practice,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science (Optical Society of America, 2003), paper CWQ4.
  31. W. Li, T. Bothe, C. von Kopylow, and W. P. O. Jüptner, “Evaluation methods for gradient measurement techniques,” Proc. SPIE 5457, 300–311 (2004). [CrossRef]
  32. T. Bothe, Grundlegende untersuchungen zur formerfassung mit einem neuartigen prinzip der streifenprojektion und realisierung in einer kompakten 3D-kamera (BIAS Verlag, 2008). [PubMed]
  33. URL:www.fringeprocessor.com (2010).
  34. P. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010). [CrossRef]
  35. W. Jüptner and T. Bothe, “Sub-nanometer resolution for the inspection of reflective surfaces using white light,” Proc. SPIE 7405, 740502 (2009). [CrossRef]
  36. P. M. Seitz and J. Kim, “The space of all stereo images,” Int. J. Comput. Vision 48, 21–21 (2002). [CrossRef]
  37. R. Orghidan, “Catadioptric stereo based on structured light projection,” Ph.D. dissertation (Universitat de Giorona—EIA Electrònica, 2006).
  38. P. Kuthirummal and P. K. Nayar, “Multiview radial catadioptric imaging for scene capture,” ACM Trans. Graphics 25, 916–923 (2006). [CrossRef]
  39. R. A. Hicks and R. K. Perline, “Equiresolution catadioptric sensors,” Appl. Opt. 44, 6108–6114 (2005). [CrossRef] [PubMed]
  40. H. Nagahara, K. Yoshida, and M. Yachida, “An omnidirectional vision sensor with single view and constant resolution,” in Proceedings of the 11th International Conference on Computer Vision (IEEE, 2007), pp. 1–8.
  41. T. Stehle, D. Truhn, T. Aach, C. Trautwein, and J. Tischendorf, “Camera calibration for fish-eye lenses in endoscopy with an application to 3D reconstruction,” in Proceedings of the Fourth IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2007), pp. 1176–1179. [CrossRef]
  42. A. Zomet, D. Feldman, P. Peleg, and D. Weinshall, “Mosaicing new views: the crossed-slits projection,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 741–754 (2003). [CrossRef]
  43. T. Pajdla, “Stereo with oblique cameras,” Int. J. Comput. Vision 47, 161–170 (2002). [CrossRef]
  44. P. Sturm, “Multi-view geometry for general camera models,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol.  1 (IEEE, 2005), pp. 206–212.
  45. J. Yu and L. McMillan, “General linear cameras,” Lect. Notes Comput. Vision 3024, 14–27 (2004).
  46. P. Nayar, “Computational cameras: redefining the image,” Computer 39, 30–38 (2006). [CrossRef]
  47. R. Raskar, “Less Is more: coded computational photography,” Lect. Notes Comput. Sci. 4843, 1–12 (2007). [CrossRef]
  48. P. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43, 2709–2721 (2004). [CrossRef] [PubMed]
  49. A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocussing,” ACM Trans. Graphics, Vol. 26, paper 69 (2007).
  50. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR 2005-02 (Stanford, 2005), http://graphics.stanford.edu:/papers/lfcamera/lfcam.
  51. T. Treibitz, Y. Schechner, and H. Singh, “Flat refractive geometry,” in Proceedings of the Conference on Computer Vision and Pattern Recognition (IEEE, 2008), pp. 1–8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited