OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 30 — Oct. 20, 2010
  • pp: 5870–5877

Three-dimensional point spread function and generalized amplitude transfer function of near-field flat lenses

Carlos J. Zapata-Rodríguez, David Pastor, and Juan J. Miret  »View Author Affiliations

Applied Optics, Vol. 49, Issue 30, pp. 5870-5877 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive a nonsingular, polarization-dependent, 3D impulse response that provides unambiguously the wave field scattered by a negative-refractive-index layered lens and distributed in its image volume. By means of a 3D Fourier transform, we introduce the generalized amplitude transfer function in order to gain a deep insight into the resolution power of the optical element. In the near-field regime, fine details containing some depth information may be transmitted through the lens. We show that metamaterials with moderate absorption are appropriate for subwavelength resolution keeping a limited degree of depth discrimination.

© 2010 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Image Processing

Original Manuscript: July 21, 2010
Revised Manuscript: September 9, 2010
Manuscript Accepted: September 19, 2010
Published: October 18, 2010

Carlos J. Zapata-Rodríguez, David Pastor, and Juan J. Miret, "Three-dimensional point spread function and generalized amplitude transfer function of near-field flat lenses," Appl. Opt. 49, 5870-5877 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  2. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Phys. Uspekhi 10, 509–514 (1968). [CrossRef]
  3. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002). [CrossRef] [PubMed]
  4. D. R. Smith, D. Schurig, M. Rosenbluth, and S. Schultz, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003). [CrossRef]
  5. S. Cummer, “Simulated causal subwavelength focusing by a negative refractive index slab,” Appl. Phys. Lett. 82, 1503–1505 (2003). [CrossRef]
  6. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  7. J. B. Brock, A. A. Houck, and I. L. Chuang, “Focusing inside negative index materials,” Appl. Phys. Lett. 85, 2472–2474(2004). [CrossRef]
  8. K. Aydin, I. Bulu, and E. Ozbay, “Focusing of electromagnetic waves by a left-handed metamaterial flat lens,” Opt. Express 13, 8753–8759 (2005). [CrossRef] [PubMed]
  9. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001). [CrossRef]
  10. M. Nieto-Vesperinas, “Problem of image superresolution with a negative-refractive-index slab,” J. Opt. Soc. Am. A 21, 491–498 (2004). [CrossRef]
  11. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
  12. N. Fang, H. S. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  13. R. Kotyński and T. Stefaniuk, “Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes,” J. Opt. A: Pure Appl. Opt. 11, 015001(2009). [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics, seventh (expanded) ed. (Cambridge, 1999).
  15. R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett. 84, 1290–1293 (2004). [CrossRef]
  16. M. W. Feise and Y. S. Kivshar, “Sub-wavelength imaging with a left-handed material flat lens,” Phys. Lett. A 334, 326–330(2005). [CrossRef]
  17. T. Hakkarainen, T. Setälä, and A. T. Friberg, “Subwavelength electromagnetic near-field imaging of point dipole with metamaterial nanoslab,” J. Opt. Soc. Am. A 26, 2226–2234(2009). [CrossRef]
  18. R. Marques, M. J. Freire, and J. D. Baena, “Theory of three-dimensional subdiffraction imaging,” Appl. Phys. Lett. 89, 211113 (2006). [CrossRef]
  19. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100nm resolution fluorescence microscopy of thick samples,” Nature Methods 5, 527–529(2008). [CrossRef] [PubMed]
  20. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  21. K. Miyamoto and E. Wolf, “Generalization of the Maggi–Rubinowicz theory of the boundary diffraction wave—Part I,” J. Opt. Soc. Am. 52, 615–625 (1962). [CrossRef]
  22. E. Collet and E. Wolf, “Symmetry properties of focused fields,” Opt. Lett. 5, 264–266 (1980). [CrossRef]
  23. C. W. McCutchen, “Generalized aperture and the three-dimensional diffraction image,” J. Opt. Soc. Am. 54, 240–242 (1964). [CrossRef]
  24. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006). [CrossRef]
  25. D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. Dorazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-IR ranges,” Phys. Rev. A 77, 033848 (2008). [CrossRef]
  26. C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996). [CrossRef]
  27. W. T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50, 749–753 (1960). [CrossRef]
  28. S. Grill and E. H. K. Stelzer, “Method to calculate lateral and axial gain factors of optical setups with a large solid angle,” J. Opt. Soc. Am. A 16, 2658–2665 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited