OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 31 — Nov. 1, 2010
  • pp: 5938–5946

Analytical approach to optimizing alternating current biasing of bolometers

Andrea Catalano, Alain Coulais, and Jean-Michel Lamarre  »View Author Affiliations


Applied Optics, Vol. 49, Issue 31, pp. 5938-5946 (2010)
http://dx.doi.org/10.1364/AO.49.005938


View Full Text Article

Enhanced HTML    Acrobat PDF (669 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Bolometers are most often biased by alternating current (AC) in order to get rid of low-frequency noises that plague direct current (DC) amplification systems. When stray capacitance is present, the responsivity of the bolometer differs significantly from the expectations of the classical theories. We develop an analytical model that facilitates the optimization of the AC readout electronics design and tuning. This model is applied to cases similar to the bolometers in the Planck space mission. We study how the responsivity and the noise equivalent power (NEP) of an AC biased bolometer depend on these essential parameters: bias current, heat sink temperature and background power, modulation frequency of the bias, and stray capacitance. We show that the optimal AC bias current in the bolometer is significantly different from that of the DC case as soon as a stray capacitance is present due to the difference in the electrothermal feedback. We also compare the performance of square and sine bias currents and show a slight theoretical advantage for the latter. This work resulted from the need to be able to predict the real behavior of AC biased bolometers in an extended range of working parameters. It proved to be applicable to optimize the tuning of the Planck High-Frequency Instrument bolometers.

© 2010 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.1880) Detectors : Detection
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Detectors

History
Original Manuscript: July 6, 2010
Revised Manuscript: September 14, 2010
Manuscript Accepted: September 14, 2010
Published: October 20, 2010

Citation
Andrea Catalano, Alain Coulais, and Jean-Michel Lamarre, "Analytical approach to optimizing alternating current biasing of bolometers," Appl. Opt. 49, 5938-5946 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-31-5938


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Bock, P. Appleton, L. Armus, J. Bally, D. Benford, A. Blain, M. Bradford, A. Cooray, M. Devlin, S. Dodelson, D. Dowell, P. Goldsmith, S. Golwala, S. Hanany, M. Harwit, W. Holland, W. Holzapfel, M. Kenyon, K. Irwin, E. Komatsu, A. Lange, D. Leisawitz, A. Lee, B. Mason, J. Mather, H. Moseley, S. Meyer, S. Myers, H. Nguyen, V. Novosad, B. Sadoulet, G. Stacey, S. Staggs, P. Richards, G. Wilson, M. Yun, and J. Zmuidzinas, “Superconducting detector arrays for far-infrared to mm-wave astrophysics,” in astro2010: The Astronomy and Astrophysics Decadal Survey, Vol. 2010 of ArXiv Astrophysics e-prints (2009), pp. 45–57.
  2. R. C. Jones, “The general theory of bolometer performance,” J. Opt. Soc. Am. 43, 1–10 (1953). [CrossRef]
  3. J. C. Mather, “Bolometer noise: nonequilibrium theory.,” Appl. Opt. 21, 1125–1129 (1982). [CrossRef] [PubMed]
  4. J. C. Mather, “Electrical self-calibraion of nonideal bolometers,” Appl. Opt. 23, 3181–3183 (1984). [CrossRef] [PubMed]
  5. J. C. Mather, “Bolometers: ultimate sensitivity, optimization, and amplifier coupling,” Appl. Opt. 23, 584–588 (1984). [CrossRef] [PubMed]
  6. F. M. Rieke, A. E. Lange, J. W. Beeman, and E. E. Haller, “An AC bridge readout for bolometric detectors,” IEEE Trans. Nucl. Sci. 36, 946–949 (1989). [CrossRef]
  7. T. Wilbanks, M. Devlin, A. E. Lange, J. W. Beeman, and S. Sato, “Improved low frequency stability of bolometric detectors,” IEEE Trans. Nucl. Sci. 37, 566–572 (1990). [CrossRef]
  8. M. Devlin, A. E. Lange, T. Wilbanks, and S. Sato, “A dc-coupled, high sensitivity bolometric detector system for the Infrared Telescope in Space,” IEEE Trans. Nucl. Sci. 40, 162–165 (1993). [CrossRef]
  9. S. Gaertner, A. Benoît, J.-M. Lamarre, M. Giard, J. Bret, J. Chabaud, F. Désert, J. Faure, G. Jegoudez, J. Landé, J. Leblanc, J. Lepeltier, J. Narbonne, M. Piat, R. Pons, G. Serra, and G. Simiand, “A new readout system for bolometers with improved low frequency stability,” Astron. Astrophys. Suppl. Ser. 126, 151–160 (1997). [CrossRef]
  10. E. Kreysa, F. Bertoldi, H. Gemuend, K. M. Menten, D. Muders, L. A. Reichertz, P. Schilke, R. Chini, R. Lemke, T. May, H. Meyer, and V. Zakosarenko, “LABOCA: a first generation bolometer camera for APEX,” Proc. SPIE 4855, 41–48 (2003). [CrossRef]
  11. J.-M. Lamarre, J.-L. Puget, P. A. R. Ade, F. Bouchet, G. Guyot, A. E. Lange, F. Pajot, A. Arondel, K. Benabed, J.-L. Beney, A. Benoît, J.-Ph. Bernard, R. Bhatia, Y. Blanc, J. J. Bock, E. Bréelle, T. W. Bradshaw, P. Camus, A. Catalano, J. Charra, M. Charra, S. E. Church, F. Couchot, A. Coulais, B. P. Crill, M. R. Crook, K. Dassas, P. de Bernardis, J. Delabrouille, P. de Marcillac, J.-M. Delouis, F.-X. Désert, C. Dumesnil, X. Dupac, G. Efstathiou, P. Eng, C. Evesque, J.-J. Fourmond, K. Ganga, M. Giard, R. Gispert, L. Guglielmi, J. Haissinski, S. Henrot-Versillé, E. Hivon, W. A. Holmes, W. C. Jones, T. C. Koch, H. Lagardére, P. Lami, J. Landé, B. Leriche, C. Leroy, Y. Longval, J. F. Macías-Pérez, T. Maciaszek, B. Maffei, B. Mansoux, C. Marty, S. Masi, C. Mercier, M.-A. Miville-Deschênes, A. Moneti, L. Montier, J. A. Murphy, J. Narbonne, M. Nexon, C. G. Paine, J. Pahn, O. Perdereau, F. Piacentini, M. Piat, S. Plaszczynski, E. Pointecouteau, R. Pons, N. Ponthieu, S. Prunet, D. Rambaud, G. Recouvreur, C. Renault, I. Ristorcelli, C. Rosset, D. Santos, G. Savini, G. Serra, P. Stassi, R. V. Sudiwala, J.-F. Sygnet, J. A. Tauber, J.-P. Torre, M. Trisram, L. Vibert, A. Woodcraft, V. Yurchenko, and D. Yvon, “Planck pre-launch status: the HFI instrument, from specifications to actual performance,” Astron. Astrophys 520 (2010), to be published. [CrossRef]
  12. J. E. Vaillancourt, “Complex impedance as a diagnostic tool for characterizing thermal detectors,” Rev. Sci. Instrum. 76, 043107 (2005). [CrossRef]
  13. M. Piat, J.-P. Torre, E. Bréelle, A. Coulais, A. Woodcraft, W. Holmes, and R. Sudiwala, “Modeling of Planck-high frequency instrument bolometers using non-linear effects in the thermometers,” Nucl. Instrum. Methods Phys. Res. A 559, 588–590(2006). [CrossRef]
  14. S. Zwerdling, “A fast, high-responsivity bolometer detector for the very-far infrared,” Infrared Phys. 8, 271–336 (1968). [CrossRef]
  15. J.-M. Lamarre, “Photon noise in photometric instruments at far-infrared and submillimeter wavelengths,” Appl. Opt. 25, 870–876 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited