OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 31 — Nov. 1, 2010
  • pp: 6092–6097

Proposal of an electrically controlled terahertz switch based on liquid-crystal-filled dual-metallic grating structures

Yinghao Yuan, Jian He, Jinsong Liu, and Jianquan Yao  »View Author Affiliations

Applied Optics, Vol. 49, Issue 31, pp. 6092-6097 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an electrically controlled terahertz switch based on metallic grating–liquid crystal–metallic grating (MG-LC-MG) structures. The switching mechanism is realized by modifying the effective refractive of the LC using different bias electric fields. In our design, the MGs not only support supertransmittance at certain frequencies, but they also act as the electrodes. Simulation results show the proposed structure has the potential to realize an electrically controlled terahertz switch with a high extinction ratio and low insertion loss. A prototype design is also proposed for practical implementation.

© 2010 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(050.2770) Diffraction and gratings : Gratings
(160.3710) Materials : Liquid crystals
(040.2235) Detectors : Far infrared or terahertz
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: July 28, 2010
Revised Manuscript: September 18, 2010
Manuscript Accepted: October 6, 2010
Published: October 27, 2010

Yinghao Yuan, Jian He, Jinsong Liu, and Jianquan Yao, "Proposal of an electrically controlled terahertz switch based on liquid-crystal-filled dual-metallic grating structures," Appl. Opt. 49, 6092-6097 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007). [CrossRef]
  2. R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008). [CrossRef]
  3. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2625–2630 (2004). [CrossRef] [PubMed]
  4. T. Tsong-Ru, C. Chao-Yuan, P. Ru-Pin, P. Ci-Ling, and Z. Xi-Cheng, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Comp. Lett. 14, 77–79 (2004). [CrossRef]
  5. C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett. 21, 730–732 (2009). [CrossRef]
  6. C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995–3001 (2008). [CrossRef] [PubMed]
  7. C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112–1114 (2006). [CrossRef] [PubMed]
  8. C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006). [CrossRef]
  9. C.-L. Pan, C.-F. Hsieh, R.-P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921–3930 (2005). [CrossRef] [PubMed]
  10. S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008). [CrossRef]
  11. H. Zhang, P. Guo, P. Chen, S. J. Chang, and J. H. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26, 101–106 (2009). [CrossRef]
  12. K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56, 2792–2799(2009). [CrossRef]
  13. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on–off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008). [CrossRef]
  14. C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008). [CrossRef] [PubMed]
  15. T. Bauer, J. S. Kolb, T. Loffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002). [CrossRef]
  16. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009). [CrossRef] [PubMed]
  17. P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2086 (1996). [CrossRef]
  18. J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry–Perot interferometers,” J. Opt. 10, 109–117 (1979). [CrossRef]
  19. J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26–37 (2005).
  20. D. Armand, Y. Todorov, F. Garet, C. Minot, and J. L. Coutaz, “Study of the transmission of subwavelength metallic grids in the THz frequency range,” IEEE J. Sel. Top. Quantum Electron. 14, 513–520 (2008). [CrossRef]
  21. C. Minot, Y. Todorov, D. Armand, F. Garet, and J. L. Coutaz, “Long-wavelength limit and Fano profiles of extraordinary transmission through metallic slit gratings in the THz range,” Phys. Rev. B 80, 153410 (2009). [CrossRef]
  22. COMSOL Multiphysics, “Multiphysics modeling and simulation software—COMSOL” (COMSOL, Inc., retrieved 19 September 2010), http://www.comsol.com.
  23. R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Terahz. Waves 30, 1139–1147 (2009). [CrossRef]
  24. K. Sakoda, Optical Properties of Photonic Crystals, 1st ed. (Springer-Verlag, 2001), pp. 177–185.
  25. W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009). [CrossRef]
  26. H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008). [CrossRef]
  27. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006). [CrossRef] [PubMed]
  28. M. Guillaumée, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martin-Moreno, F. J. Garcia-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010). [CrossRef] [PubMed]
  29. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photonics 3, 148–151 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited