OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 31 — Nov. 1, 2010
  • pp: 6102–6110

Effect of line roughness on the diffraction intensities in angular resolved scatterometry

Akiko Kato and Frank Scholze  »View Author Affiliations


Applied Optics, Vol. 49, Issue 31, pp. 6102-6110 (2010)
http://dx.doi.org/10.1364/AO.49.006102


View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scatterometry is a common technique for the characterization of nanostructured surfaces. With shrinking dimensions, fewer and fewer propagating diffraction orders exist, and structure roughness becomes more important. Recent investigations suggest that roughness has to be taken into account for structure reconstruction. The short wavelength of the extreme UV (EUV) is advantageous, since it provides more propagating diffraction orders as compared to UV and visible radiation and increases the sensitivity to small structural features, particularly roughness. We present a method to numerically estimate changes in measured diffraction intensities in angular resolved EUV scatterometry induced by line roughness. The model can be used to include the estimation of the roughness into the structure reconstruction algorithm.

© 2010 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(290.5820) Scattering : Scattering measurements
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: July 13, 2010
Revised Manuscript: September 8, 2010
Manuscript Accepted: September 9, 2010
Published: October 27, 2010

Citation
Akiko Kato and Frank Scholze, "Effect of line roughness on the diffraction intensities in angular resolved scatterometry," Appl. Opt. 49, 6102-6110 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-31-6102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Raymond, “Overview of scatterometry applications in high volume silicon manufactoring,” AIP Conf. Proc. 788, 394–402 (2005).
  2. T. Schuster, S. Rafler, K. Frenner, and W. Osten, “Influence of line edge roughness (LER) on angular resolved and on spectroscopic scatterometry,” Proc. SPIE 7155, 71550W(2008). [CrossRef]
  3. T. Schuster, S. Rafler, V. Ferreras Paz, K. Frenner, and W. Osten, “Field stitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009). [CrossRef]
  4. Y. Cohen, B. Yaakobovitz, Y. Tsur, and D. Schreiner, “A novel method for pushing the limits of line edge roughness detection by scatterometry,” Proc. SPIE 6922, 692220 (2008). [CrossRef]
  5. P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desières, J. Hazart, and P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203(2005). [CrossRef]
  6. C. Wang, R. Jones, E. Lin, W. Wu, B. Rice, K. Choi, G. Thompson, S. Weigand, and D. Keane, “Characterization of correlated line edge roughness of nanoscale line gratings using small angle x-ray scattering,” J. Appl. Phys. 102, 024901(2007). [CrossRef]
  7. R. Klein, C. Laubis, R. Müller, F. Scholze, and G. Ulm, “The EUV metrology program of PTB,” Microelectron. Eng. 83, 707–709 (2006). [CrossRef]
  8. F. Scholze, J. Tümmler, and G. Ulm, “High-accuracy radiometry in the EUV range at the PTB soft x-ray radiometry beamline,” Metrologia 40, S224–S228 (2003). [CrossRef]
  9. C. Laubis, C. Buchholz, A. Fischer, S. Plöger, F. Scholz, H. Wagner, F. Scholze, and G. Ulm, “Characterization of large off-axis EUV mirrors with high accuracy reflectometry at PTB,” Proc. SPIE 6151, 61510I (2006). [CrossRef]
  10. F. Scholze, C. Laubis, U. Dersch, J. Pomplun, S. Burger, and F. Schmidt, “The influence of line edge roughness and CD uniformity on EUV scatterometry for CD characterization of EUV masks,” Proc. SPIE 6617, 66171A (2007). [CrossRef]
  11. H. Gross, F. Scholze, A. Rathsfeld, and M. Bär, “Evaluation of measurement uncertainties in EUV scatterometry,” Proc. SPIE 7390, 73900T (2009). [CrossRef]
  12. J. Pomplun, S. Burger, F. Schmidt, F. Scholze, C. Laubis, and U. Dersch, “Metrology of EUV masks by EUV-scatteometry and finite element analysis,” Proc. SPIE 7028, 70280P (2008). [CrossRef]
  13. S. Burger, R. Klose, A. Schädle, F. Schmidt, and L. Zschiedrich, “FEM modelling of 3D photonic crystals and photonic crystal waveguides,” Proc. SPIE 5728, 164–173 (2005). [CrossRef]
  14. S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher, “Benchmark of FEM, waveguide and FDTD algorithms for rigorous mask simulation,” Proc. SPIE 5992, 599216 (2005). [CrossRef]
  15. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, C. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  16. J. Elschner, R. Hinder, A. Rathsfeld, and G. Schmidt, DiPoG Homepage, http://www.wias-berlin.de/software/DIPOG.
  17. H. Gross, R. Model, M. Bär, M. Wurm, B. Bodermann, and A. Rathsfeld, “Mathematical modeling of indirect measurements in scatterometry,” Measurement 39, 782–794(2006). [CrossRef]
  18. J. Pomplun, S. Burger, F. Schmidt, L. Zschiedrich, F. Scholze, C. Laubis, and U. Dersch, “Rigorous FEM-simulation of EUV-masks: influence of shape and material parameters,” Proc. SPIE 6349, 63493D (2006). [CrossRef]
  19. F. Scholze and C. Laubis, “Use of EUV scatterometry for the characterization of line profiles and line roughness on photomasks,” in Proceedings of the 24th European Mask and Lithography Conference, U.Behringer, ed. (VDE Verlag, 2008), pp. 374–382.
  20. H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Profile reconstruction in extreme ultraviolet (EUV) scatterometry: modeling and uncertainty estimates,” Meas. Sci. Technol. 20, 105102 (2009). [CrossRef]
  21. M. Wurm, “Über die dimensionelle Charakterisierung von Gitterstrukturen auf Fotomasken mit einem neuartigen DUV-Scatterometer,” Ph.D. dissertation (Friedrich-Schiller-Universität Jena, 2008).
  22. A. Kato and F. Scholze, “The effect of line roughness on the reconstruction of line profiles for EUV masks from EUV scatterometry,” Proc. SPIE 7636, 76362I (2010). [CrossRef]
  23. T. A. Germer, “Modeling the effect of line profile variation on optical critical dimension metrology,” Proc. SPIE 6518, 65180Z (2007). [CrossRef]
  24. K. Eidmann, M. Kühne, P. Müller, and G. D. Tsakiras, “Characterization of pinhole transmission gratings,” J. X-Ray Sci. Technol. 2, 259–273 (1990). [CrossRef]
  25. P. Debije, “Über den Einfluss der Wärmebewegung auf die Interferenzerscheinungen bei Röntgenstrahlen,” Verh. Dtsch. Phys. Ges. 15, 678–689 (1913).
  26. I. Waller, “Zur Frage der Einwirkung der Wärmebewegung auf die Interferenz von Röntgenstrahlen,” Z. Phys. A 17, 398–408 (1923). [CrossRef]
  27. H. Gross, A. Rathsfeld, F. Scholze, R. Model, and M. Bär, “Computational methods estimating uncertainties for profile reconstruction in scatterometry,” Proc. SPIE 6995, 69950T(2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited