OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 31 — Nov. 1, 2010
  • pp: 6127–6133

Time-resolved quantitative multiphase interferometric imaging of a highly focused ultrasound pulse

Fabien Souris, Jules Grucker, Jacques Dupont-Roc, Philippe Jacquier, Arnaud Arvengas, and Frédéric Caupin  »View Author Affiliations

Applied Optics, Vol. 49, Issue 31, pp. 6127-6133 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Interferometric imaging is a well-established method to image phase objects by mixing the image wavefront with a reference one on a CCD camera. It has also been applied to fast transient phenomena, mostly through the analysis of single interferograms. It is shown that, for repetitive phenomena, multiphase acquisition brings significant advantages. A 1 MHz focused sound field emitted by a hemispherical piezotransducer in water is imaged as an example. Quantitative image analysis provides high resolution sound field profiles. Pressure at focus determined by this method agrees with measurements from a fiber-optic probe hydrophone. This confirms that multiphase interferometric imaging can indeed provide quantitative measurements.

© 2010 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(100.3175) Image processing : Interferometric imaging
(110.4155) Imaging systems : Multiframe image processing
(110.5086) Imaging systems : Phase unwrapping
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Image Processing

Original Manuscript: May 13, 2010
Revised Manuscript: September 25, 2010
Manuscript Accepted: September 27, 2010
Published: October 28, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Fabien Souris, Jules Grucker, Jacques Dupont-Roc, Philippe Jacquier, Arnaud Arvengas, and Frédéric Caupin, "Time-resolved quantitative multiphase interferometric imaging of a highly focused ultrasound pulse," Appl. Opt. 49, 6127-6133 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1988), Vol. 26, pp. 349–393. [CrossRef]
  2. J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1990), Vol. 28, pp. 271–359. [CrossRef]
  3. V. I. Vlad and D. Malacara, “Direct spatial reconstruction of optical phase from phase-modulated images,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1994), Vol. 33, pp. 261–317. [CrossRef]
  4. G. W. Willard, “Focusing ultrasonic radiators,” J. Acoust. Soc. Am. 21, 360–375 (1949). [CrossRef]
  5. C. F. Ying, “Photoelastic visualization and theoretical analysis of scatterings of ultrasound pulses in solids,” in Physical Acoustics, R.N.Thurston, ed. (Academic, 1990), Vol. 19, pp. 291–343.
  6. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  7. T. Ezure, K. Mizutani, and H. Masuyama, “Optical measurement of sound fields estimated from multiple interference images using Mach–Zehnder interferometer,” Electron. Commun. Jpn. Part 2 87, 20–27 (2004). [CrossRef]
  8. O. J. Løkberg, “Sound in flight: measurement of sound fields by use of TV holography,” Appl. Opt. 33, 2574–2584 (1994). [CrossRef] [PubMed]
  9. R. C. Gutierrez, K. V. Schcheglov, and T. Tang, “Interferometric system for precision imaging of vibrating structures,” U.S. patent 6,219,145, B1 (17 April 2001), http://www.freepatentsonline.com/6219145.pdf.
  10. J. A. Conway, J. V. Osborn, and J. D. Fowler, “Stroboscopic imaging interferometer for MEMS performance measurement,” in Aerospace Report TR-2007,8555, http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA470710.
  11. J. S. Harris, R. L. Fusek, and J. S. Marcheski, “Stroboscopic interferometer,” Appl. Opt. 18, 2368–2371 (1979). [CrossRef] [PubMed]
  12. O. Y. Kwon, D. M. Shough, and R. A. Williams, “Stroboscopic phase-shifting interferometry,” Opt. Lett. 12, 855–857(1987). [CrossRef] [PubMed]
  13. E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176, 441–452 (2000). [CrossRef]
  14. K. T. Gahagan, D. S. Moore, D. J. Funk, J. H. Reho, and R. L. Rabie, “Ultrafast interferometric microscopy for laser-driven shock-wave characterization,” J. Appl. Phys. 92, 3679–2682(2002). [CrossRef]
  15. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys. A 78, 483–489 (2004). [CrossRef]
  16. D. J. Funk, D. S. Moore, S. D. McGrane, J. H. Reho, and R. L. Rabie, “Ultrafast spatial interferometry: a tool for characterizing material phase and hydrodynamic motion in laser-excited metals,” Appl. Phys. A 81, 295–302 (2005). [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), pp. 309–310.
  18. The apparatus is, in fact, designed for working with low temperature samples protected by four windows on each side.
  19. R. A. Fine and F. J. Millero, “Compressibility of water as a function of temperature and pressure,” J. Chem. Phys. 59, 5529–5536 (1973). [CrossRef]
  20. C. J. Morgan, “Least-squares estimation in phase-measurement inteferometry,” Opt. Lett. 7, 368–370 (1982). [CrossRef] [PubMed]
  21. J. J. Chyou, S. J. Chen, and Y. K. Chen, “Two-dimensionnal phase unwrapping with a multichannel least-mean-square algorithm,” Appl. Opt. 43, 5655–5661 (2004). [CrossRef] [PubMed]
  22. M. Deutsch and I. Beniaminy, “Inversion of Abel’s integral equation for experimental data,” J. Appl. Phys. 54, 137–143(1983). [CrossRef]
  23. J. Staudenraus and W. Eisenmenger, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267–273 (1993). [CrossRef]
  24. J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurements of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119, 1432–1440 (2006). [CrossRef] [PubMed]
  25. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432(1983). [CrossRef] [PubMed]
  26. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987). [CrossRef] [PubMed]
  27. K. Davitt, A. Arvengas, and F. Caupin, “Water at the cavitation limit: density of the metastable liquid and size of the critical bubble,” Europhys. Lett. 90, 16002(2010). [CrossRef]
  28. “Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure,” http://www.iapws.org/relguide/rindex.pdf.
  29. K. Davitt, E. Rolley, F. Caupin, A. Arvengas, and S. Balibar, “Equation of state of water under negative pressure,” J. Chem. Phys. (to be published).
  30. The fact that the lasers used in both methods have different wavelengths (532nm and 808nm) introduces a negligible correction.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited