OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 31 — Nov. 1, 2010
  • pp: 6160–6169

Wide-field high-resolution solid immersion fluorescence microscopy applying an aplanatic solid immersion lens

Lin Wang, Mark C. Pitter, and Michael G. Somekh  »View Author Affiliations


Applied Optics, Vol. 49, Issue 31, pp. 6160-6169 (2010)
http://dx.doi.org/10.1364/AO.49.006160


View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of aplanatic solid immersion lenses (ASILs) made of high refractive index optical materials provides a route to wide-field high-resolution optical microscopy. We analyze the aberrations that need to be circumvented for wide-field, high-resolution imaging by hybrid optical simulations based on both ray and wave optics. The conclusions on the relationships among ASIL size, fluorescence imaging spectral width, and field of view not only guide us to design the microscopic system demonstrated in this article, but also clearly demonstrate the general design considerations necessary when applying an ASIL in fluorescence microscopy. Based on the simulation results, we develop wide-field high-resolution solid immersion fluorescence (SIF) microscopy employing an ASIL with an effective numerical aperture (NA) of 1.85. We demonstrate wide-field, high-resolution imaging of synthetic and biological samples with our SIF system. In the presence of a gap between the ASIL and the sample, we experimentally demonstrate that the effective NA of the SIF system is determined by the refractive index of the gap medium in addition to that of the ASIL material; thus, in general, degrading the resolution. Future developments of the SIF system to suit routine use and make it achieve still higher resolution by combining SIF and other microscopic techniques are proposed.

© 2010 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(110.0110) Imaging systems : Imaging systems
(110.0180) Imaging systems : Microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(180.2520) Microscopy : Fluorescence microscopy
(350.5730) Other areas of optics : Resolution

ToC Category:
Imaging Systems

History
Original Manuscript: July 29, 2010
Revised Manuscript: October 4, 2010
Manuscript Accepted: October 4, 2010
Published: October 29, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Lin Wang, Mark C. Pitter, and Michael G. Somekh, "Wide-field high-resolution solid immersion fluorescence microscopy applying an aplanatic solid immersion lens," Appl. Opt. 49, 6160-6169 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-31-6160


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999). [CrossRef]
  2. Q. Wu, L. P. Ghislain, and V. B. Elings, “Imaging with solid immersion lenses, spatial resolution, and applications,” Proc. IEEE 88, 1491–1498 (2000). [CrossRef]
  3. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990). [CrossRef]
  4. S. M. Mansfield, “Solid immersion microscopy,” Ph.D. dissertation (Stanford University, 1992).
  5. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994). [CrossRef]
  6. S. B. Ippolito, “High spatial resolution subsurface microscopy,” Ph.D. dissertation (Boston University, 2004).
  7. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005). [CrossRef]
  8. J. Zhang, “High resolution solid immersion lens microscopy and its application to surface plasmon resonance imaging,” Ph.D. dissertation (University of Nottingham, 2006).
  9. J. Zhang, C. W. See, and M. G. Somekh, “Imaging performance of wide field solid immersion lens microscopy,” Appl. Opt. 46, 4202–4208 (2007). [CrossRef] [PubMed]
  10. F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16, 9501–9506 (2008). [CrossRef] [PubMed]
  11. T. Sasaki, M. Baba, M. Yoshita, and H. Akiyama, “Application of solid immersion lens to high-resolution photoluminescence imaging of patterned GaAs quantum wells,” Jpn. J. Appl. Phys. Part 2 36, L962–L964 (1997). [CrossRef]
  12. M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, “Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures,” Appl. Phys. Lett. 73, 635–637 (1998). [CrossRef]
  13. M. Baba, M. Yoshita, T. Sasaki, and H. Akiyama, “Application of solid immersion lens to submicron resolution imaging of nano-scale quantum wells,” Opt. Rev. 6, 257–260 (1999). [CrossRef]
  14. M. Yoshita, K. Koyama, Y. Hayamizu, M. Baba, and H. Akiyama, “Improved high collection efficiency in fluorescence microscopy with a Weierstrass-sphere solid immersion lens,” Jpn. J. Appl. Phys. Part 2 41, L858–L860 (2002). [CrossRef]
  15. V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92, 660–665 (2002). [CrossRef]
  16. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999). [PubMed]
  17. L. Wang, “High-resolution structured illumination solid immersion fluorescence microscopy,” Ph.D. dissertation (University of Nottingham, 2010).
  18. M. J. Weber, Handbook of Optical Materials (CRC Press, 2002). [CrossRef]
  19. T. D. Milster, “Chromatic correction of high-performance solid immersion lens systems,” Jpn. J. Appl. Phys. Part 1 38, 1777–1779 (1999). [CrossRef]
  20. J. M. Geary, Introduction to Lens Design: with Practical Zemax Examples (Willmann-Bell, 2002).
  21. P. C. D. Hobbs, Building Electro-Optical Systems: Making It All Work (Wiley, 2000). [CrossRef]
  22. Y. N. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir 12, 4033–4038 (1996). [CrossRef]
  23. R. H. Gavin, Cytoskeleton Methods and Protocols (Humana, 2009).
  24. L. Dai, I. Gregor, I. Von Der Hocht, T. Ruckstuhl, and J. Enderlein, “Measuring large numerical apertures by imaging the angular distribution of radiation of fluorescing molecules,” Opt. Express 13, 9409–9414 (2005). [CrossRef] [PubMed]
  25. M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, “Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy,” J. Appl. Phys. 92, 862–865 (2002). [CrossRef]
  26. M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999). [CrossRef]
  27. J. Zhang, M. C. Pitter, S. G. Liu, C. W. See, and M. G. Somekh, “Surface-plasmon microscopy with a two-piece solid immersion lens: bright and dark fields,” Appl. Opt. 45, 7977–7986(2006). [CrossRef] [PubMed]
  28. K. König, “Laser tweezers and multiphoton microscopes in life sciences,” Histochem. Cell Biol. 114, 79–92 (2000). [PubMed]
  29. N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials 25, 2721–2730 (2004). [CrossRef] [PubMed]
  30. P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, “Topographical control of cell behavior. 1. Simple step cues,” Development (Cambridge, U.K.) 99, 439–448(1987).
  31. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999). [CrossRef]
  32. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150(2000). [CrossRef]
  33. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.,” J. Microsc. 198, 82–87 (2000). [CrossRef] [PubMed]
  34. A. L. Stout and D. Axelrod, “Evanescent field excitation of fluorescence by epi-illumination microscopy,” Appl. Opt. 28, 5237–5242 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited