OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 31 — Nov. 1, 2010
  • pp: G140–G147

Automatic sensitivity adjustment for a curvature sensor

Aglae Kellerer, Mark Chun, and Christ Ftaclas  »View Author Affiliations

Applied Optics, Vol. 49, Issue 31, pp. G140-G147 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (655 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



There are different techniques for sensing wavefront phase distortions due to atmospheric turbulence. Curvature sensors are practical because their sensitivity is adjustable to the prevailing atmospheric conditions. Even at the best sites, the turbulence intensity has been found to vary at times over only a few minutes and regularly over longer periods. Two methods to automatically adjust the sensitivity of a curvature sensor are proposed: First, the defocus distance can be adjusted prior to the adaptive-optics (AO) loop through the acquisition of a long-exposure image and can then be kept constant. Second, the defocus distance can be changed during the AO loop, based on the voltage values sent to the deformable mirror. We demonstrate that the performance increase—assessed in terms of the image Strehl ratio—can be significant.

© 2010 Optical Society of America

OCIS Codes
(110.0115) Imaging systems : Imaging through turbulent media
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Wavefront Sensors

Original Manuscript: March 3, 2010
Revised Manuscript: July 12, 2010
Manuscript Accepted: July 29, 2010
Published: September 8, 2010

Aglae Kellerer, Mark Chun, and Christ Ftaclas, "Automatic sensitivity adjustment for a curvature sensor," Appl. Opt. 49, G140-G147 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988). [CrossRef] [PubMed]
  2. B. C. Platt and R. Shack, “History and principles of Shack Hartmann wave-front sensing,” J. Refract. Surg. 17, s573–s577 (2001). [PubMed]
  3. F. Roddier, M. Northcott, and J. E. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Publ. Astron. Soc. Pac. 103, 131–149 (1991). [CrossRef]
  4. Users Manual for the CFHT Adaptive Optics Bonnette, http://www.cfht.hawaii.edu/Instruments/Imaging/AOB/.
  5. R. Arsenault, A. Jaime, H. Bonnet, J. Brynnel, B. Delabre, R. Donaldson, C. Dupuy, E. Fedrigo, J. Farinato, N. Hubin, L. Ivanescu, M. Kasper, J. Paufique, S. Rossi, S. Tordo, S. Stroebele, J. L. Lizon, P. Gigan, F. Delplancke, A. Silber, M. Quattri, and R. Reiss, “MACAO-VLTI: An Adaptive Optics system for the ESO VLT interferometer,” Proc. SPIE 4839, 174–185 (2003). [CrossRef]
  6. M. Sarazin and F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).
  7. J. Paufique, European Southern Observatory, June 2010 (personal communication).
  8. F. Roddier, “Curvature sensing: a diffraction theory,” NOAO Advanced Development Program87-3 (1987).
  9. F. Rigaut, R. Arsenault, J. Kerr, D. Salmon, M. Northcott, Y. Dutil, and C. Boyer, “The Canada France Hawaii adaptive optics bonnette II: simulations and control,” Proc. SPIE 2201, 149–160 (1994). [CrossRef]
  10. J. E. Graves, M. J. Northcott, F. J. Roddier, C. A. Roddier, and L. M. Close, “First light for Hokupa’a: 36-element curvature AO system at UH,” Proc. SPIE 3353, 34–43 (1998). [CrossRef]
  11. M. Chun, D. Toomey, Z. Wahhaj, B. Biller, E. Artigau, T. Hayward, M. Liu, L. Close, M. Hartung, F. Rigaut, and C. Ftaclas, “Performance of the near-infrared coronagraphic imager on Gemini-South,” Proc. SPIE 7015, 70151V (2008). [CrossRef]
  12. M. Watanabe, S. Oya, Y. Hayano, H. Takami, M. Hattori, Y. Minowa, Y. Saito, M. Ito, N. Murakami, M. Iye, O. Guyon, S. Colley, M. Eldred, T. Golota, and M. Dinkins, “Implementation of 188-element curvature-based wavefront sensor and calibration source unit for the Subaru LGSAO system,” Proc. SPIE 7015, 701564 (2008). [CrossRef]
  13. M. Sarazin, J. Melnick, J. Navarrete, and G. Lombardi, “Seeing is believing: new facts about the evolution of seeing on Paranal,” ESO Messenger 132, 11–17 (2008).
  14. V. Kornilov, A. Tokovinin, O. Vozyakova, A. Zaitsev, N. Shatsky, S. Potanin, and M. Sarazin, “MASS: a monitor of the vertical turbulence distribution,” Proc. SPIE 4839, 837–845 (2003). [CrossRef]
  15. F. Rigaut and M. Sarazin, “Seeing constraints in adaptive optics calibrations,” Astronomy with Adaptive Optics: Present Results and Future Programs, Vol. 56 of ESO Conference and Workshop Proceedings (1999), pp. 383–388.
  16. F. Roddier, “Error propagation in a closed loop adaptive optics system: a comparison between Shack-Hartmann and curvature wave-front sensor,” Opt. Commun. 113, 357–359 (1995). [CrossRef]
  17. O. Lai, “L’optique adaptative du Telescope Canada-France-Hawaii et son utilisation pour l’etude des coeurs de galaxies a flambee d’etoiles,” Ph. D. dissertation, University Paris VII (1996).
  18. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001). [CrossRef]
  19. E. Moreno-Barriuso, S. Marcos, R. Navarro, and S. A. Burns, “Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156(2001). [CrossRef]
  20. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  21. E. Moreno-Barriuso and R. Navarro, “Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000). [CrossRef]
  22. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004). [CrossRef]
  23. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  24. F. Diaz-Douton, J. Pujol, M. Arjona, and S. O. Luque, “Curvature sensor for ocular wavefront measurement,” Opt. Lett. 31, 2245–2247 (2006). [CrossRef] [PubMed]
  25. C. Torti, S. Gruppetta, and L. Diaz-Santana, “Wavefront curvature sensing for the human eye,” J. Mod. Opt. 55, 691 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited