OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 31 — Nov. 1, 2010
  • pp: G167–G173

Low-light-level charge-coupled devices for pyramid wavefront sensing on 8 m class telescopes: what actual gain?

Marcel Carbillet and Armando Riccardi  »View Author Affiliations


Applied Optics, Vol. 49, Issue 31, pp. G167-G173 (2010)
http://dx.doi.org/10.1364/AO.49.00G167


View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the results of a comparison made between standard charge-coupled devices (CCDs) and low-light-level (LLL) CCDs in the framework of pyramid wavefront sensing for astronomical adaptive optics (AO) systems on 8 m class telescopes. This comparison is based on detailed end-to-end numerical simulations of the first-light AO system of the Large Binocular Telescope, a relevant example of a pyramid-based AO system. While the model used for simulating the standard CCD is the usual well-established one, mainly based on the consideration of Poisson photon noise and Gaussian readout noise (RON), the model used for the LLLCCD is not only made through the simplistic consideration of a subelectron equivalent RON, but also through the establishment of a gamma distribution. Moreover, an additional dark current component, also resulting from the peculiar architecture of LLLCCDs, is considered. The results obtained clearly show a gain of roughly 0.8 magnitude when considering K-band Strehl ratios ranging from 15% to 60%, at least in the particular case study chosen (Fried parameter characterizing the turbulent atmosphere above the telescope r 0 = 15 cm and low light levels).

© 2010 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Wavefront Sensor Hardware

History
Original Manuscript: April 2, 2010
Revised Manuscript: September 25, 2010
Manuscript Accepted: October 7, 2010
Published: October 21, 2010

Citation
Marcel Carbillet and Armando Riccardi, "Low-light-level charge-coupled devices for pyramid wavefront sensing on 8 m class telescopes: what actual gain?," Appl. Opt. 49, G167-G173 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-31-G167


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Jerram, P. Pool, D. J. Burt, S. Bowring, S. Spencer, M. Hazelwood, I. Moody, N. Catlett, and P. Heyes, “The LLLCCD: low light imaging without the need for an intensifier,” Proc. SPIE 4306, 178–186 (2001). [CrossRef]
  2. C. D. Mackay, R. N. Tubbs, R. Bell, D. J. Burt, P. Jerram, and I. Moody, “Sub-electron read noise at MHz pixel rates,” Proc. SPIE 4306, 289–298 (2001). [CrossRef]
  3. A. G. Basden, C. A. Haniff, and C. D. Mackay, “Photon counting strategies with low light level CCDs,” Mon. Not. R. Astron. Soc. 345, 985–991 (2003). [CrossRef]
  4. I. Foppiani, C. Baffa, V. Biliotti, G. Bregoli, G. Cosentino, E. Giani, S. Esposito, B. Marano, and P. Salinari, “Photon counting CCDs as wavefront sensors for AO,” Proc. SPIE 4839, 312–316 (2003). [CrossRef]
  5. A. G. Basden and C. A. Haniff, “Low light level CCDs and visibility parameter estimation,” Mon. Not. R. Astron. Soc. 347, 1187–1197 (2004). [CrossRef]
  6. C. Petit, Th. Fusco, J. Charton, D. Mouillet, P. Rabou, T. Buey, G. Rousset, J.-F. Sauvage, P. Baudoz, P. Gigan, M. Kasper, E. Fedrigo, N. Hubin, P. Feautrier, J.-L. Beuzit, and P. Puget, “The SPHERE XAO system: design and performance,” Proc. SPIE 7015, 70151D (2008). [CrossRef]
  7. M. Carbillet, C. Vérinaud, S. Esposito, A. Riccardi, A. Puglisi, B. Femenía, and L. Fini, “Performance of the first-light adaptive optics system of LBT by means of CAOS simulations,” Proc. SPIE 4839, 131–139 (2003). [CrossRef]
  8. R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” J. Mod. Opt. 43, 289–293 (1996). [CrossRef]
  9. M. Carbillet, C. Vérinaud, B. Femenía, A. Riccardi, and L. Fini, “Modelling astronomical adaptive optics: I. the software package CAOS,” Mon. Not. R. Astron. Soc. 356, 1263–1275(2005). [CrossRef]
  10. R. Ragazzoni and J. Farinato, “Sensitivity of a pyramidic wave-front sensor in closed loop adaptive optics,” Astron. Astrophys. 350, L23–L26 (1999).
  11. S. Esposito and A. Riccardi, “Pyramid wavefront sensor behavior in partial correction adaptive optics systems,” Astron. Astrophys. 369, L9–L12 (2001). [CrossRef]
  12. C. Vérinaud, M. Le Louarn, V. Korkiakoski, and M. Carbillet, “Adaptive optics for high-contrast imaging: pyramid sensor versus Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 357, L26–L30 (2005). [CrossRef]
  13. S. Esposito, A. Riccardi, L. Fini, A. T. Puglisi, E. Pinna, M. Xompero, R. Briguglio, F. Quirós Pacheco, P. Stefanini, J. C. Guerra, L. Busoni, A. Tozzi, F. Pieralli, G. Agapito, G. Brusa-Zappellini, R. Demers, J. G. Brynnel, and P. Salinari, “First-light AO (FLAO) system for LBT: final integration and acceptance tests in Europe,” Proc. SPIE 7736, 773609 (2010). [CrossRef]
  14. M. Carbillet, C. Vérinaud, M. Guarracino, L. Fini, O. Lardière, B. Le Roux, A. T. Puglisi, B. Femenía, A. Riccardi, B. Anconelli, M. Bertero, and P. Boccacci, “CAOS—a numerical simulation tool for astronomical adaptive optics (and beyond),” Proc. SPIE 5490, 637–648 (2004). [CrossRef]
  15. M. Carbillet and A. Riccardi, “Numerical modeling of atmospherically perturbed phase screens: new solutions for classical fast Fourier transform and Zernike methods,” Appl. Opt. 49, G47–G52 (2010). [CrossRef]
  16. M. Carbillet, A. Riccardi, and S. Esposito, “Numerical simulation studies for the first-light adaptive optics system of the Large Binocular Telescope,” Proc. SPIE 5490, 731–732 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited