OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 31 — Nov. 1, 2010
  • pp: G27–G36

Optimal noise-weighted reconstruction with elongated Shack–Hartmann wavefront sensor images for laser tomography adaptive optics

Richard M. Clare, Miska Le Louarn, and Clementine Béchet  »View Author Affiliations


Applied Optics, Vol. 49, Issue 31, pp. G27-G36 (2010)
http://dx.doi.org/10.1364/AO.49.000G27


View Full Text Article

Enhanced HTML    Acrobat PDF (1113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The subaperture images in Shack–Hartmann wavefront sensors are elongated when using sodium laser guide stars, due to the parallax effect and the nonzero thickness of the sodium layer. This elon gation increases the measurement error in each subaperture and introduces a correlation between the measurements in the orthogonal x and y pixel axes. We show, via end-to-end numerical simulations, that including these errors in a matrix-vector-multiply maximum a posteriori reconstructor sig nificantly improves the expected performance of a laser tomography adaptive optics system for the 42 m diameter European Extremely Large Telescope. In particular, including this noise-weighted re construction shows the detected photon requirement is similar for both central and side launch of the sodium lasers.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

ToC Category:
Wavefront Sensor Reconstruction

History
Original Manuscript: January 15, 2010
Revised Manuscript: May 5, 2010
Manuscript Accepted: May 28, 2010
Published: June 16, 2010

Citation
Richard M. Clare, Miska Le Louarn, and Clementine Béchet, "Optimal noise-weighted reconstruction with elongated Shack–Hartmann wavefront sensor images for laser tomography adaptive optics," Appl. Opt. 49, G27-G36 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-31-G27


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kissler-Patig, “Overall science goals and top level AO requirements for E-ELT,” in Proceedings of the First International Conference on Adaptive Optics for Extremely Large Telescopes, Y.Clénet, J.-M.Conan, T.Fusco, and G.Rousset, eds. (EDP Sciences, 2009), p. 01001.
  2. J. W. Hardy, Adaptive Optics for Astronomical Telescopes(Oxford U. Press, 1998).
  3. N. Hubin, B. L. Ellerbroek, R. Arsenault, R. M. Clare, R. Dekany, L. Gilles, M. Kasper, G. Herriot, M. Le Louarn, E. Marchetti, S. Oberti, J. Stoesz, J.-P. Véran, and C. Vérinaud, “Adaptive optics for Extremely Large Telescopes,” in Proceedings of the International Astronomical Union: Scientific Requirements for Extremely Large Telescopes P.Whitelock, M.Dennefeld, and B.Leibundgut, eds. (Cambridge U. Press2005), pp. 60–85.
  4. P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, and D. M. Pennington, “The W. M. Keck Observatory laser guide star adaptive optics system: overview,” Publ. Astron. Soc. Pac. 118, 297–309 (2006). [CrossRef]
  5. R. Foy and A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, L29–L31 (1985).
  6. M. A. van Dam, A. H. Bouchez, D. Le Mignant, and P. L. Wizinowich, “Quasi-static aberrations induced by laser guide stars in adaptive optics,” Opt. Express 14, 7535–7540(2006). [CrossRef] [PubMed]
  7. R. M. Clare, M. A. van Dam, and A. H. Bouchez, “Modeling low order aberrations in laser guide star adaptive optics systems,” Opt. Express 15, 4711–4725 (2007). [CrossRef] [PubMed]
  8. O. Lardière, R. Conan, C. Bradley, K. Jackson, and G. Herriot, “A laser guide star wavefront sensor bench demonstrator for TMT,” Opt. Express 16, 5527–5543 (2008). [CrossRef] [PubMed]
  9. B. L. Ellerbroek and D. W. Tyler, “Adaptive optics sky coverage calculations for the Gemini-North Telescope,” Publ. Astron. Soc. Pac. 110, 165–185 (1998). [CrossRef]
  10. M. Tallon, I. Tallon-Bosc, É. Thiébaut, and C. Béchet, “Shack-Hartmann wavefront reconstruction with elongated sodium laser guide stars: improvements with priors and noise correlations,” Proc. SPIE 7015, 70151N (2008). [CrossRef]
  11. R. M. Clare, M. Le Louarn, S. Oberti, and A. Garcia-Rissmann, “Adaptive optics simulations for the European Extremely Large Telescope,” Proc. SPIE 7015, 701572(2008). [CrossRef]
  12. L. Schreiber, I. Foppiani, C. Robert, E. Diolaiti, J.-M. Conan, and M. Lombini, “Laser guide stars for extremely large telescopes: efficient Shack-Hartmann wavefront sensor design using the weighted centre-of-gravity algorithm,” Mon. Not. R. Astron. Soc. 396, 1513–1521 (2009). [CrossRef]
  13. R. M. Clare and M. Le Louarn, “Simulations of laser guide star adaptive optics systems for the European Extremely Large Telescope,” in Proceedings of the First International Conference on Adaptive Optics for Extremely Large Telescopes, Y.Clénet, J.-M.Conan, T.Fusco, and G.Rousset, eds. (EDP Sciences, 2009), p. 03005.
  14. D. Gratadour, E. Gendron, G. Rousset, and F. Rigaut, “Fratricide effect on ELTs,” in Proceedings of the First International Conference on Adaptive Optics for Extremely Large Telescopes, Y.Clénet, J.-M.Conan, T.Fusco, and G.Rousset, eds. (EDP Sciences, 2009), p. 04005.
  15. C. Béchet, M. Le Louarn, R. M. Clare, M. Tallon, I. Tallon-Bosc, and É. Thiébaut, “Closed-loop ground layer adaptive optics simulations with elongated spots: impact of modeled noise correlations,” in Proceedings of the First International Conference on Adaptive Optics for Extremely Large Telescopes, Y.Clénet, J.-M.Conan, T.Fusco, and G.Rousset, eds. (EDP Sciences, 2009), p. 03004.
  16. C. Béchet, M. Tallon, I. Tallon-Bosc, É. Thiébaut, M. Le Louarn, and R. M. Clare, “Optimal reconstruction for closed-loop ground layer adaptive optics with elongated spots,” J. Opt. Soc. Am. A 27, A1–A8 (2010). [CrossRef]
  17. É. Thiébaut and M. Tallon, “Fast minimum variance wavefront reconstruction for extremely large telescopes,” J. Opt. Soc. Am. A 27, 1046–1059 (2010). [CrossRef]
  18. M. Le Louarn, C. Verinaud, V. Korkiakoski, and E. Fedrigo, “Parallel simulation tools for AO on ELTS,” Proc. SPIE 5490 (2004). [CrossRef]
  19. M. Le Louarn and N. Hubin, “Wide-field adaptive optics for deep-field spectroscopy in the visible,” Mon. Not. R. Astron. Soc. 349, 1009–1018 (2004). [CrossRef]
  20. T. Fusco, J.-M. Conan, V. Michau, L. M. Mugnier, and G. Rousset, “Efficient phase estimation for large-field-of-view adaptive optics,” Opt. Lett. 24, 1472–1474 (1999). [CrossRef]
  21. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006). [CrossRef]
  22. M. A. van Dam, A. H. Bouchez, D. Le Mignant, R. D. Campbell, J. C. Y. Chin, S. K. Hartman, E. M. Johansson, R. Lafon, P. J. Stomski Jr., D. M. Summers, and P. L. Wizinowich, “The W. M. Keck Observatory laser guide star adaptive optics system: performance characterization,” Publ. Astron. Soc. Pac. 118, 310–318 (2006). [CrossRef]
  23. L. Gilles, “Closed-loop stability and performance analysis of least-squares and minimum-variance control algorithms for multiconjugate adaptive optics,” Appl. Opt. 44, 993–1002(2005). [CrossRef] [PubMed]
  24. R. M. Clare, B. L. Ellerbroek, G. Herriot, and J.-P. Véran, “Adaptive optics sky coverage modeling for extremely large telescopes,” Appl. Opt. 45, 8964–8978 (2006). [CrossRef] [PubMed]
  25. S. Thomas, S. Adkins, D. Gavel, T. Fusco, and V. Michau, “Study of optimal wavefront sensing with elongated laser guide stars,” Mon. Not. R. Astron. Soc. 387, 173–187 (2008). [CrossRef]
  26. J. Kolb, M. Downing, and R. M. Clare, “Detectors for LGS WF sensing on an ELT: characteristics, special features, limitations, technology,” in Proceedings of the First International Conference on Adaptive Optics for Extremely Large Telescopes, Y.Clénet, J.-M.Conan, T.Fusco, and G.Rousset, eds. (EDP Sciences, 2009), p. 05014.
  27. P. S. Argall, O. N. Vassiliev, R. J. Sica, and M. M. Mwangi, “Lidar measurements taken with a large-aperture liquid mirror. 2. sodium resonance-fluorescence system,” Appl. Opt. 39, 2393–2400 (2000). [CrossRef]
  28. L. Gilles and B. Ellerbroek, “Shack-Hartmann wavefront sensing with elongated sodium laser beacons: centroiding versus matched filtering,” Appl. Opt. 45, 6568–6576(2006). [CrossRef] [PubMed]
  29. R. Conan, O. Lardière, G. Herriot, C. Bradley, and K. Jackson, “Experimental assessment of the matched filter for laser guide star wavefront sensing,” Appl. Opt. 48, 1198–1211(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited