OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 31 — Nov. 1, 2010
  • pp: G47–G52

Numerical modeling of atmospherically perturbed phase screens: new solutions for classical fast Fourier transform and Zernike methods

Marcel Carbillet and Armando Riccardi  »View Author Affiliations


Applied Optics, Vol. 49, Issue 31, pp. G47-G52 (2010)
http://dx.doi.org/10.1364/AO.49.000G47


View Full Text Article

Enhanced HTML    Acrobat PDF (354 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe new solutions permitting us to overcome the well-known problems encountered when employing the two main classical methods for numerical modeling of atmospherically perturbed phase screens. The first method, the fast-Fourier-transform-based numerical method, suffers from a lack of low frequencies. Subharmonics adding is an already-known solution to this problem, but no criterion has been defined up to now in order to precisely determine how many subharmonics are necessary for each given case of physical and numerical characteristics. We define two criteria and show their practical efficiency. The second, Zernike-based, method suffers, a contrario, from bad behavior of the phase screens at high spatial frequencies. To overcome this problem, due to numerical instability, we developed an algorithm based on an alternative definition of the Zernike polynomials, involving the recurrence definition of the Jacobi polynomials, as well as the relationship between the Zernike and the Jacobi polynomials. The methods described and used in this paper have been implemented within the freely distributed software package CAOS.

© 2010 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(350.1260) Other areas of optics : Astronomical optics
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Turbulence Modeling

History
Original Manuscript: January 20, 2010
Manuscript Accepted: May 14, 2010
Published: June 25, 2010

Citation
Marcel Carbillet and Armando Riccardi, "Numerical modeling of atmospherically perturbed phase screens: new solutions for classical fast Fourier transform and Zernike methods," Appl. Opt. 49, G47-G52 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-31-G47

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited