OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 32 — Nov. 10, 2010
  • pp: 6236–6242

High-power widely tunable thulium fiber lasers

Timothy S. McComb, R. Andrew Sims, Christina C. C. Willis, Pankaj Kadwani, Vikas Sudesh, Lawrence Shah, and Martin Richardson  »View Author Affiliations


Applied Optics, Vol. 49, Issue 32, pp. 6236-6242 (2010)
http://dx.doi.org/10.1364/AO.49.006236


View Full Text Article

Enhanced HTML    Acrobat PDF (712 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Applications requiring long-range atmospheric propagation are driving the development of high-power thulium fiber lasers. We report on the performance of two different laser configurations for high-power tunable thulium fiber lasers: one is a single oscillator utilizing a volume Bragg grating for wavelength stabilization; the other is a master oscillator power amplifier system with the oscillator stabilized and made tunable by a diffraction grating. Each configuration provides > 150 W of average power, > 50 % slope efficiency, narrow output linewidth, and > 100 nm tunability in the wavelength range around 2 μm .

© 2010 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 12, 2010
Revised Manuscript: October 4, 2010
Manuscript Accepted: October 9, 2010
Published: November 3, 2010

Citation
Timothy S. McComb, R. Andrew Sims, Christina C. C. Willis, Pankaj Kadwani, Vikas Sudesh, Lawrence Shah, and Martin Richardson, "High-power widely tunable thulium fiber lasers," Appl. Opt. 49, 6236-6242 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-32-6236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Giorgio, V. Sudesh, M. C. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica and phosphate glasses: a comparative study,” J. Appl. Phys. 103, 093104 (2008). [CrossRef]
  2. P. Sprangle, A. Ting, J. Penano, R. Fischer, and B. Hafizi, “Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications,” IEEE J. Quantum Electron. 45, 138–148 (2009). [CrossRef]
  3. F. Hanson, P. Poirier, D. Haddock, D. Kichura, and M. Lasher, “Laser propagation at 1.56μm and 3.60μm in maritime environments,” Appl. Opt. 48, 4149–4157 (2009). [CrossRef] [PubMed]
  4. S. Ishii, K. Mizutani, H. Fukuoka, T. Ishikawa, B. Philippe, H. Iwai, T. Aoki, T. Itabe, A. Sato, and K. Asai, “Coherent 2μm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device,” Appl. Opt. 49, 1809–1817 (2010). [CrossRef] [PubMed]
  5. G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007). [CrossRef]
  6. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser LIDAR system,” Appl. Opt. 49, 562–567 (2010). [CrossRef] [PubMed]
  7. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990). [CrossRef] [PubMed]
  8. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2μmTm3+-doped silica fibre lasers,” Opt. Commun. 230, 197–203 (2004). [CrossRef]
  9. W. A. Clarkson, L. Pearson, Z. Zhang, J. W. Kim, D. Shen, A. J. Boyland, J. K. Sahu, and M. Ibsen, “High power thulium doped fiber lasers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWT1.
  10. G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790nm pumped Tm-doped fiber lasers,” Proc. SPIE 6102, 610208 (2006). [CrossRef]
  11. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, xxxvii (2010).
  12. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  13. J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating,” Opt. Lett. 33, 1204–1206 (2008). [CrossRef] [PubMed]
  14. S. Babin, S. Kablukov, and A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17, 1323–1326 (2007). [CrossRef]
  15. T. McComb, V. Sudesh, and M. Richardson, “Volume Bragg grating stabilized spectrally narrow Tm fiber laser,” Opt. Lett. 33, 881–883 (2008). [CrossRef] [PubMed]
  16. F. Wang, D. Shen, D. Fan, and Q. Lu, “Spectrum narrowing of high power Tm: fiber laser using a volume Bragg grating,” Opt. Express 18, 8937–8941 (2010). [CrossRef] [PubMed]
  17. A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided mode resonance filter as a spectrally selective feedback element in a double-cladding optical fiber laser,” IEEE Photon. Technol. Lett. 19, 2030–2032 (2007). [CrossRef]
  18. R. A. Sims, Z. Roth, T. McComb, L. Shah, V. Sudesh, P. Menelaos, E. Johnson, and M. C. Richardson, “Guided mode resonance filters as stable line-narrowing feedback elements for Tm fiber lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThN2.
  19. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090nm,” Opt. Lett. 27, 1989–1991 (2002). [CrossRef]
  20. T. S. McComb, L. Shah, R. A. Sims, V. Sudesh, J. Szilagyi, and M. Richardson, “High power, tunable thulium fiber laser system for atmospheric propagation experiments,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThR5.
  21. G. P. Frith, B. Samson, A. Carter, J. Farroni, and K. Tankala, “High efficiency 110W monolithic FBG tuned 2μm fiber laser,” in CLEO/Europe and IQEC 2007 Conference Digest (Optical Society of America, 2007), paper CJ4_5.
  22. L. Pearson, J. W. Kim, Z. Zhang, M. Ibsen, J. K. Sahu, and W. A. Clarkson, “High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier,” Opt. Express 18, 1607–1612 (2010). [CrossRef] [PubMed]
  23. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608W thulium fiber amplifier,” Opt. Lett. 34, 1204–1206 (2009). [CrossRef] [PubMed]
  24. Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007). [CrossRef]
  25. F. Wang, D. Shen, D. Fan, and Q. Li, “Widely tunable dual-wavelength operation of a high-power Tm:fiber laser using volume Bragg grating,” Opt. Lett. 35, 2388–2391 (2010). [CrossRef] [PubMed]
  26. O. M. Efimov, L. B. Glebov, K. C. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999). [CrossRef]
  27. P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express 16, 9507–9512 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited