OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 32 — Nov. 10, 2010
  • pp: 6295–6301

Plasmon field enhancement in silver core-protruded silicon shell nanocylinder illuminated with light at 633 nm

Ming-Je Sung, Yao-Feng Ma, Yuan-Fong Chau, and Ding-Wei Huang  »View Author Affiliations


Applied Optics, Vol. 49, Issue 32, pp. 6295-6301 (2010)
http://dx.doi.org/10.1364/AO.49.006295


View Full Text Article

Enhanced HTML    Acrobat PDF (900 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show, to the best of our knowledge, the first simulation result of the strong plasmonic field coupling and enhancement at the Ag/Si interface of a silver core/protruded silicon shell nanocylinder by using the finite-element method. The strong plasmon field, with a slow effective phase velocity accumulated at the Ag/Si interface, which results from the large effective index of the surface plasmon due to the nearly identical real parts with opposite signs of the permittivities of silver and silicon at 633 nm , is analyzed. When the silicon shell has shallow protrusions of proper periodicity to meet the phase matching condition between the incident light and the surface plasmon wave at the Ag/Si interface, a higher scattered electric field and a higher sensitivity to the refractive index change of the surrounding medium can be achieved. Furthermore, a feasible implementation of the core–shell nanocylinder design concept is studied and discussed.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 7, 2010
Revised Manuscript: October 11, 2010
Manuscript Accepted: October 11, 2010
Published: November 5, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Ming-Je Sung, Yao-Feng Ma, Yuan-Fong Chau, and Ding-Wei Huang, "Plasmon field enhancement in silver core-protruded silicon shell nanocylinder illuminated with light at 633nm," Appl. Opt. 49, 6295-6301 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-32-6295


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974). [CrossRef]
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface- enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef] [PubMed]
  3. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dassari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced raman scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996). [CrossRef] [PubMed]
  4. X. Hong and F. J. Kao, “Microsurface plasmon resonance biosensing based on gold-nanoparticle film,” Appl. Opt. 43, 2868–2873 (2004). [CrossRef] [PubMed]
  5. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005). [CrossRef] [PubMed]
  6. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002). [CrossRef] [PubMed]
  7. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604(2002). [CrossRef] [PubMed]
  8. Y. F. Chau, M. W. Chen, and D. P. Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Appl. Opt. 48, 617–622 (2009). [CrossRef] [PubMed]
  9. M. J. Sung, Y. F. Ma, Y. F. Chau, and D. W. Huang, “Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders,” Appl. Opt. 49, 920–926(2010). [CrossRef] [PubMed]
  10. Y. F. Chau, H. H. Yeh, and D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair,” Appl. Opt. 47, 5557–5561 (2008). [CrossRef] [PubMed]
  11. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005). [CrossRef]
  12. B. C. Sih and M. O. Wolf, “Dielectric medium effects on collective surface plasmon coupling interactions in oligothiophene-linked gold nanoparticles,” J. Phys. Chem. B 110, 22298–22301 (2006). [CrossRef] [PubMed]
  13. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997). [CrossRef]
  14. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999). [CrossRef]
  15. P. M. Gresho and R. L. Sani, Incompressible Flow and Finite Element Method (Wiley, 2000), Vols. 1 and 2.
  16. COMSOL Multiphysic, http://www.comsol.com (email: info @comsol.com).
  17. P. B. Johnson and R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  18. Luxpop, “Thin film and bulk index of refraction and photonics calculations,” http://www.luxpop.com (1 July 2010).
  19. J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32173–183 (1991). [CrossRef]
  20. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008). [CrossRef]
  21. L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647(2009). [CrossRef] [PubMed]
  22. I. C. Goyal, R. L. Gallawa, and A. K. Ghatek, “Bent planar waveguide and whispering gallery modes: a new method of analysis,” J. Lightwave Technol. 8, 768–774 (1990). [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 2001).
  24. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401(2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited