OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 33 — Nov. 20, 2010
  • pp: 6430–6435

Magnified reconstruction of digitally recorded holograms by Fresnel–Bluestein transform

John F. Restrepo and Jorge Garcia-Sucerquia  »View Author Affiliations


Applied Optics, Vol. 49, Issue 33, pp. 6430-6435 (2010)
http://dx.doi.org/10.1364/AO.49.006430


View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for numerical reconstruction of digitally recorded holograms with variable magnification is presented. The proposed strategy allows for smaller, equal, or larger magnification than that achieved with Fresnel transform by introducing the Bluestein substitution into the Fresnel kernel. The magnification is obtained independent of distance, wavelength, and number of pixels, which enables the method to be applied in color digital holography and metrological applications. The approach is supported by experimental and simulation results in digital holography of objects of comparable dimensions with the recording device and in the reconstruction of holograms from digital in-line holographic microscopy.

© 2010 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.1995) Holography : Digital holography
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Holography

History
Original Manuscript: September 10, 2010
Revised Manuscript: October 8, 2010
Manuscript Accepted: October 8, 2010
Published: November 12, 2010

Citation
John F. Restrepo and Jorge Garcia-Sucerquia, "Magnified reconstruction of digitally recorded holograms by Fresnel–Bluestein transform," Appl. Opt. 49, 6430-6435 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-33-6430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital a noninvasive contrast holographic microscopy: imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005). [CrossRef] [PubMed]
  2. J. Desse, P. Picart, and P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt. Express 16, 5471–5480 (2008). [CrossRef] [PubMed]
  3. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005). [CrossRef] [PubMed]
  4. Th. Kreis, M. Adams, and W. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233(1997). [CrossRef]
  5. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting colour digital holography,” Opt. Lett. 27, 1108–1110 (2002). [CrossRef]
  6. J. Li, P. Tankam, Z. Peng, and P. Picart, “Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification,” Opt. Lett. 34, 572–574(2009). [CrossRef] [PubMed]
  7. L. Yu and M. K. Kim, “Pixel resolution control in numerical reconstruction of digital holography,” Opt. Lett. 31, 897–899(2006). [CrossRef] [PubMed]
  8. U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
  9. M. Sypeck, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42, 3158–3164 (2003). [CrossRef]
  10. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003). [CrossRef] [PubMed]
  11. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004). [CrossRef] [PubMed]
  12. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29, 1668–1670 (2004). [CrossRef] [PubMed]
  13. L. Bluestein, “Linear filtering approach to the computation of the discrete Fourier transform,” IEEE Trans. Audio Electroacoust. 18, 451–455 (1970). [CrossRef]
  14. H. J. Kreuzer, “Holographic microscope and method of hologram reconstruction,” U. S. patent 6411406 B1 (25 June 2002).
  15. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  16. T. Baumbach, E. Kolenovic, V. Kebbel, and W. Juptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006). [CrossRef] [PubMed]
  17. J. Garcia-Sucerquia, J. Herrera, and R. Castañeda, “Incoherent recovering of the spatial resolution in digital holography,” Opt. Commun. 260, 62–67 (2006). [CrossRef]
  18. J. Garcia-Sucerquia, W. Xu, P. Kagles, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef] [PubMed]
  19. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited