OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 33 — Nov. 20, 2010
  • pp: 6436–6447

Temperature and pressure imaging using infrared planar laser-induced fluorescence

David A. Rothamer and Ronald K. Hanson  »View Author Affiliations

Applied Optics, Vol. 49, Issue 33, pp. 6436-6447 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1061 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new diagnostic technique for measurements of temperature and pressure distribution in gaseous flows has been developed. The technique, based on infrared planar laser-induced fluorescence (IR-PLIF), is applicable to all IR-active species. A simple two-line excitation approach is used for measurements of temperature, while pressure measurements utilize online excitation on one rotational line and offline excitation on another. A demonstration of the technique in a supersonic underexpanded jet of 30% CO 2 and 70% N 2 was performed, and the results are, to the best of our knowledge, the first demonstration of temperature and pressure imaging using IR-PLIF. The developed diagnostic shows potential for single-shot two-dimensional measurements of temperature and pressure in gaseous flows.

© 2010 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(120.6780) Instrumentation, measurement, and metrology : Temperature
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 6, 2010
Manuscript Accepted: September 24, 2010
Published: November 15, 2010

David A. Rothamer and Ronald K. Hanson, "Temperature and pressure imaging using infrared planar laser-induced fluorescence," Appl. Opt. 49, 6436-6447 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Kirby and R. K. Hanson, “Linear excitation schemes for IR planar-induced fluorescence imaging of CO and CO2,” Appl. Opt. 41, 1190–1201 (2002). [CrossRef] [PubMed]
  2. B. J. Kirby, “Infrared planar laser-induced fluorescence imaging and applications to imaging of carbon monoxide and carbon dioxide,” Ph.D. dissertation (Stanford University, 2001).
  3. Z. T. Alwahabi, J. Zetterberg, Z. S. Li, and M. Alden, “High resolution polarization spectroscopy and laser induced fluorescence of CO2 around 2 μm,” Eur. Phys. J. D 42, 41–47 (2007). [CrossRef]
  4. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005). [CrossRef]
  5. P. K. Falcone, R. K. Hanson, and C. H. Kruger, “Tunable diode-laser absorption-measurements of nitric-oxide in combustion gases,” Combust. Sci. Technol. 35, 81–99 (1983). [CrossRef]
  6. P. L. Varghese and R. K. Hanson, “Collisional narrowing effects on spectral-line shapes measured at high-resolution,” Appl. Opt. 23, 2376–2385 (1984). [CrossRef] [PubMed]
  7. K. P. Gross, R. L. McKenzie, and P. Logan, “Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence,” Exp. Fluids 5, 372–380 (1987). [CrossRef]
  8. B. K. McMillin, J. L. Palmer, and R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross-flow,” Appl. Opt. 32, 7532–7545 (1993). [CrossRef] [PubMed]
  9. E. R. Lachney and N. T. Clemens, “PLIF imaging of mean temperature and pressure in a supersonic bluff wake,” Exp. Fluids 24, 354–363 (1998). [CrossRef]
  10. M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503–510 (1998). [CrossRef]
  11. A. Arnold, B. Lange, T. Bouche, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, and J. Wolfrum, “Absolute temperature-fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsen-Ges. Phys. Chem. 96, 1388–1393 (1992).
  12. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156–1166 (1981). [CrossRef] [PubMed]
  13. D. G. Fletcher and J. C. McDaniel, “Temperature-measurement in a compressible flow field using laser-induced iodine fluorescence,” Opt. Lett. 12, 16–18 (1987). [CrossRef] [PubMed]
  14. T. Niimi, T. Fujimoto, and N. Shimizu, “Method for planar measurement of temperature in compressible flow using two-line laser-induced iodine fluorescence,” Opt. Lett. 15, 918–920 (1990). [CrossRef]
  15. D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Optimization of a tracer-based PLIF diagnostic for simultaneous imaging of EGR and temperature in IC engines,” Appl. Phys. B 99, 371–384 (2010). [CrossRef]
  16. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  17. F. Lemoine and B. Leporcq, “An efficient optical pressure measurement in compressible flows—laser-induced iodine fluorescence,” Exp. Fluids 19, 150–158 (1995). [CrossRef]
  18. B. Hiller and R. K. Hanson, “Simultaneous planar measurements of velocity and pressure fields in gas-flows using laser-induced fluorescence,” Appl. Opt. 27, 33–48 (1988). [CrossRef] [PubMed]
  19. M. Boguszko and G. S. Elliott, “On the use of filtered Rayleigh scattering for measurements in compressible flows and thermal fields,” Exp. Fluids 38, 33–49 (2005). [CrossRef]
  20. S. M. Dash, D. E. Wolf, and J. M. Seiner, “Analysis of turbulent underexpanded jets. Part I: Shock noise features using SCIPVIS,” AIAA J. 23, 505–514 (1985). [CrossRef]
  21. P. Birkby and G. J. Page, “Numerical predictions of turbulent underexpanded sonic jets using a pressure-based methodology,” Proc. Inst. Mech. Eng. Part G 215, 165–173(2001). [CrossRef]
  22. S. G. Chuech, M. C. Lai, and G. M. Faeth, “Structure of turbulent sonic underexpanded free jets,” AIAA J. 27, 549–559 (1989). [CrossRef]
  23. J. Panda, “Shock oscillation in underexpanded screeching jets,” J. Fluid Mech. 363, 173–198 (1998). [CrossRef]
  24. J. Panda, “An experimental investigation of screech noise generation,” J. Fluid Mech. 378, 71–96 (1999). [CrossRef]
  25. D. C. Pack, “On the formation of shock-waves in supersonic gas jets (2-dimensional flow),” Q. J. Mech. Appl. Math. 1, 1–17(1948). [CrossRef]
  26. W. R. Bosenberg and D. R. Guyer, “Broadly tunable, single-frequency optical parametric frequency-conversion system,” J. Opt. Soc. Am. B 10, 1716–1722 (1993). [CrossRef]
  27. E. Love, L. Grisgsby, L. Lee, and M. Woodling, “Experimental and theoretical studies of axisymmetric free jets,” Tech. Rep. (NASA Langley Research Center, 1959).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited